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AbSTSACT 

(Distribution Liadtatioo Stacewmt No. 1) 

A hydrodfnmdc trtMaent is used co «Nrlvc Che coupled wave equation« 
for weve prcf egatioo la a eoapccaslble pianu.    Electrco acouttic 
waves 1Q the plosaa axe assgaed to be excited by a vertically polar- 
ized eleccroMgoetlc wave obliq«ely incident upc? a plane dielectric- 
plasaa Interface.    Finite difference aunerlcal solutions for the 
elactzougneelc field and the scalar pressure field are obtained in 
a reentry-type plasaa lafcr surroiaiding hlgh-perfoxMBje hypersonic 
reentry vehicles.   An inhoawgeneous plasaa layer (or sheath) Is 
nodelled with £ linearly Increeslag electron density profile.    The 
coupling of acoustic waves to electraaagneclc waves in this inhoaog- 
encous region la investigated.   Huaerlcal results are obtained for 
the conversion of electrcaugnetlc energy to plaaaa wave energy end 
vice versa. 
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CHAPTER I 

IHTBODöCTKKi 

Electron acoustic nodes have been used In experinentaily deter- 

ainlng the electron density In the plasna sheath surrounding a reentry 

väilcle (Ref. 1).    However, these nethods enployed resonance effects 

which are tnobservable In plasaas %ith large electron-neutral particle 

collision frequencies.   A short-pulse diagnostic technique using 

electroacoustic resonances and tine donain analysis of the reflected 

pulse i« described by Lustig, Baird and Ewald (Ref. 2).   For slender 

conical ret?tty vehicle» which reenter the earth's atnosphere at 

hypersonic velocities, the plasaas of interest are collision-doninated. 

Mien the vehicle readies lower altitudes, the collision frequency 

can be larger than the operating frequency of the electron acoustic 

probe.    The plasma electron density is inhonogeneous and increases 

fron sone value at the skin of the vehicle to a peak value at a 

distance typically 1 an frcm the skin.    Rather than using resonance 

effects, it is proposed to use propagating electron acoustic waves 

to probe this region.    The waves can be generated at the boundary 

between the vehicle and the plasma by an electromagnetic wave incident 

obliquely upon the bouadaxy from a dielectric material.    In the 

inhomogeneous plasma region the acoustic waves are reflected, due to 

the electron density gradient, and return to the boundary.    The 

reflected acoustic wave which returns to the botmdaxy will be con- 

verted into a transverse electromagnetic wave which can be detected 

(if it has sufficient amplitude).    The acoustic wave travels much 
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slower than an electromagnetic wave anct the returning pulse* of acoustic 

energy will lag the returning clectroMgnetic pulse in tine.    It is 

proposed to determine the electron density profile fro« its effect on 

the acoustic waves by cbserving the reflected acoustic waves. 

It is shown later (Fig. 22) that in a homogeneous plasma which 

is collision dominated the acoustic waves are attenuated very rapidly 

and are not likely to be observable for propagation distances larger 

than 0.05 ram at the most.    In an inhomogeneous plasma, the acoustic 

waves are coupled to the electromagnetic wave and the acoustic waves 

may not be so severely attenuated.   This investigation is concerned 

with a steady-state, plane wave analysis of this coupling effect and 

its Implications on electron acoustic wave propagation In an inhomoge- 

neous plasma. 

Electron acoustic waves depend upon the dynamic properties of the 

plasma.    For plasmas with suffidentiy large electron densities, it is 

appropriate (Ref. 3) to describe the acoustic waves in the plasma by 

a scalar pressure field.    The scalar pressure field can describe a 

propagating pressure wave and is physically determined by the dynamic 

properties of the plasma and the source exciting the wave. 

Acoustic wave propagation in a plasma is possible only at a finite 

plasma temperature.   A cold plasms (Incompressible plasma) la one with 

zero temperature, and no motion of the particles in the plasma is 

assumed.    A warm plasma (compressible plasma) exhibits a finite 

temperature with corresponding random thermal motions of the particles 

in the plasma.    A hot plasma is one with extremely high temperatures 
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(e.g., fiMico tcaperatures).    Electron acoustic wave propagation will 

be considered for the «am plasma only.    The propagation of an acoustic 

wave fro« <x,c region of the plasaa to another region is a consequence 

of the random thermal motions of the electrons.    This makes the local- 

isation of a disturbance impossible, and the electrons carry the dis- 

turbance from one region to another (Sef. 3).    Ths average effect is 

not Isotropie even though the motions of the electrons are random. 

The electrons moving in the direction of the wave will experience a 

larger change of moment tin and there will be a net tendency to carr- 

the dlstutbanoe in the direction of the wave (Ref. 3).    It is important 

to distinguish between the random motions of die individual electrons 

and the collective oscillatory motion of the electron plasma considered 

as a medium.   The medlue, In this sense, is described as a single- 

fluid electron gas.    The dynamic effects give rise to the collective 

motion of the plasma and form the fhysical basis for acoustic wave 

propagation.    The collective motion of the plaFma medium is described 

In a macroscopic manner by a hydrodynamic formulation of the equations 

describing wave propagation in a plasma. 

TWo approaches used in solving plasma problems are:    a micro- 

scopic gas-kinetic treatment using the Boltzmann transport equation 

together with Maxwell's equations of electrodynamics; and a macro- 

scopic, hydrodynamic treatment using the equations of conservation of 

mass and momentum together with Maxwell's equations  (Ref. 4).    The 

kinetic treatment is very difficult to use in mathematically modelling 

the modes of plasma oscillations without the imposition of serious 

physical restrictions      In order to simplify the mathematics in the 
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kinetic treatment. It is necessary to make assumptions which would make 

It more reasonable to use the simpler hydrodynamlc treatment (Ref. 4). 

The fundamental equations of hydrodynamics can be obtained from the 

Boltaann transport equation.    To a certain extent, then, the hydro- 

dynamic treatment is an approach to the correct kinetic treatment 

(Ref. 4).    It must be stated, therefore, that the hydrodynamlc treat- 

ment used in tills study Is only an approximation to an exact solution 

of the present plasma problem.    It should be noted, however, that the 

hydrodynamlc approach falls intrinsically only for cases requiring 

more than a phenomenological approach to damping effects caused by 

collisions of the plasma particles and for problems in which the 

velocity distribution ftnction is specifically involved (Ref. 4). 

Such cases might include calculations of scattering cross sections or 

of the thermal conductivity of a plasma.    In the present problem, we 

are concerned with macroscopic, organized behavior of a plasma mediun 

in which the collision frequency is energy-independent and is described 

in a phenomenological manner.    The effect of the collision frequency 

is included as a drag force on the ordered motion of the electrons in 

the conservation of momentua equation.    The hydrodynamlc treatment in 

this case should be an entirely Justified approach.    There are, however, 

certain effects, such as Landau damping, wiich are not included in 

the hydrodynamlc treatment.    These will be discussed in detail in 

Chapter II. 

Electron acoustic waves can be excited by an electromagnetic 

wave incident obliquely upon a plane bcundary between a uniform 

dielectric material and a plasma.    Since the boundary conditions are 
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both electronagneclc and acoustic« the incident electrcaagnetic nave 

will excite an acoustic wave at the boundary.    It is necessary, however, 

that the electrcaagnetic wavs have a component of the electric field 

strength vector perpendicular to the boundary (Ref. 5).    For the two- 

diaensional geooetry considered, this aeans that the incident electro- 

magnetic wave aay b« taken to be vertically polarized with the electric 

field strength vector in die plane of Incidence in the most general 

case of interest.    This is discussed further in Chapter III. 

A survey of the literature was aade to determine as completely as 

possible the previous work done in the area of wave propagation in 

compressible plasmas.    A significant result was the fact that very 

few numerical results have been polished which describe the propaga- 

tion of an electron acoustic wave in an inhomogeneous, lossy and 

bounded plasma.    The few nunerical results published were obtained 

for wave propagation in the ionosphere (Ref. 6).    The plasma under 

consideration in this report is much denser, has a higher collision 

frequency and contains much larger gradients in electron density.    No 

numerical results seem to be available for this type of plasma. 

The basic references used for the fundamental theory of plasma 

wave propagation were the works by Böhm and Gross (Ref. 3), Oster 

(Ref. 4), Stix (Ref.   7), and Friedlander (Ref. 8). 

Three principal papers give experimental data verifying the 

existence of a propagating acoustic wave in a homogeneous plasma:    Van 

Hoven (Ref. 9), Derfler and Simonen (Ref. 10), and Malmberg and Wharton 

(Ref.  11).    These papers basically verify the dispersion relation for 
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the propagating waves and give experimental evidence of Landau danping 

of the waves. 

Much work has been done on theories for wave propagation in com- 

pressible plasmas.    Walt (Ref.  12) discusses the radiation from sources 

immersed in a compressible plasma.    He shows that the compressibility 

effects of the plasma on the radiation of electromagnetic waves are 

Increased as the ratio of the acoustic velocity to the speed of light 

is Increased.    Wait (Ref. 13) discusses the Influence of bowdarles 

on wave propagation in a compressible plasma.   He also describes the 

absorptive (Impedance) boundary condition for acoustic waves.    Felsen 

(Ref. 14) derives first order coupled wave equations for the quasi- 

electromagnetic and quasi-dynaaical fields unich he describes in the 

paper.    Burman (Ref. IS) derives alternative first order coupled wave 

equations for the full~wave variable field quantities (see Chapter III). 

In another paper (Ref. 5) Burman presents a detailed derivation 

of the first order coupled equations;     He also discusses the 

coupling and power flow, and proposes some approximate solutions. 

Burman (Ref. 16) derives the second order coupled wave equations and 

specializes the equations for a planar geometry.    The fields in a 

region of coupling are Investigated.    Several approximate techniques 

for treating the equations are discussed.    The approximate techniques 

are not valid for the type of plasma considered here. 

When considering wave propagation In a bounded plasma, the 

boundary conditions become a fundamental problem.    Several authors have 

treated the subject of boundary conditions for a compressible plasma. 

Walt (Ref.  17)  demonstrates that the boundary condition which requires 
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the vanishing of die oomal coaponent of the electron velocity leads 

to lesults «hich are consistent with cold plasma theory.   Yeh (Ref.  18) 

and Wait (Sef. 19) discuss the bowdaxy conditions at a dielectric- 

plasma interface,    Sancer (Ref. 20) discusses the boundary conditions 

required for a unique solution to the equations of the hydrodynanic 

treatment.   The conversion of electromagnetic waves into longitudinal 

plasma waves at a dielectric-plasma boundary ia considered by Bessel, 

Marcuvitz and Shmoys (Ref. 21). 

A nuaber of authors have treated tha effects of the comptessi- 

bllity of a plasma surromding an antenna.   Wait (Sef. 22) states 

that It is possible for a considerable portion of die power to be 

radiated as an electron acoustic type wave.   The distribution of the 

power depends on the boindary conditions.   Kuehl (Bef. 23) calculates 

the radiation resistance of a short antenna in a warm plasma.   Be uses 

both a kinetic treatment and a hydrodpnMic treatment and compares the 

two methods. 

A brief stmnary of the topics covered in this thesis includes 

Chapter II which gives a simplified derivation of the dispersion 

relation for a pressure wave propagating in a compressible plasma. 

The plasma model is described in detail and the basic equations are 

derived.    Chapter III derives the second order coupled wave equations. 

Consideration is given to both vertical and horizontal polarizations 

of incident electromagnetic waves.    In Chapter IV finite difference 

ntanerical solutions axe presented for the coupled wave equations.    A 

linearly increasing plasma profile (electron density and temperature) 

with a constant collision frequency is considered.    A linearly 
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increteiog electron density which increases to a peak value, then drops 

abruptly to zero Is one model considered.   The cth*r «odel is a linear 

increase to a peak electron density with a transition at this point to 

a semi-infinite plasma which Is homogeneous widi an electron density 

equal to the peak plasma electron deuolty.    The homogeneous 

region is considered seml-lnfinlte because of the extremely small 

depth to which acoustic waves would penetrate tills region (assuming a 

collision-dominated plasma).   Actually the homogeneous region would be 

of finite extent and at some distance beyond the transition point the 

electron density would decrease to sero, i.e., a plasma-free space 

boundary.    Convergence of nuaerlcal solutions is considered and 

ntAerlcal solutions are compared with approximate analytical solutions. 

In Chapter V the conversi'w of an electromagnetic wave into a plasma 

wave (and vice versa) at a dielectric-plasma interface la studied as 

a function of the plasma properties and the par«Bieters of the incident 

electromagnetic wave. 



CHAPTER II 

PLASMA MODEL DESCRIPTION 

Plmaa Model Geometry and Parameters 

The planar geoaetry of either plasma model 1* iliiacrated In Fig. 

1 whidi also pictures tihe Cartesian coordinate system used throughout. 

The boundaries are planes of infinite extent in the y and z coordinate 

directions.    The plasma paraaetezs are assuned to vary in the x direc- 

tion only.    The plasma can then be described as a layer (inhomogeneous 

in the z direction) in physical contact with a dielectric half-space. 

Plasma parameters of primary interest include:    electron density^ the 

electron-neutral particle collision frequency, electron temperature 

and the plasma layer thickness.    Electron density and temperature vary 

with distance x.    The collision frequency is assuned to be a constant 

throughout the layer.    Plasmas of interest, in general terms, have 

very large peak (maximum) electron densities, very large collision 

frequencies (i.e., collision-dominated plasmas), and temperatures 

consistent with "warm" plasmas (approximately 4000eK). 

Basic Assunptions 

First consider the regions surrounding the plasma layer.    The 

dielectric is uniform and lossless with a relative dielectric constant 

K..    The region outside the plasma layer is free space.    The permea- 

bility is that of free space in all three regions. 

A plasma can be defined as a gas containing a certain density 

of free positive and negative charges.    It Is a well established 
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Figure 1.    Geometry of the Plasma Model 
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fact tiurt «B electroMtptecle vave will interact with diarged particles. 

fax Out elmcttmagaatlz wave frequmcies and plmma parameters con- 

aidexad, öi# ieteracvian prodaoM orfaoised, «teady-atata oacillatiai» 

in the plaasa.   Caoalder üi« frequency to be high enough so that the 

left« tettala »tmtiimavf and only the electrons Interact with the 

alectTOMcgnatlc wave.   Alao, nodel the plasaa as a perfect electron 

gas with a uBifom badtground charge of positive iona making it 

«actnacopically natural.    It la a good approxiaatloo to consider die 

icB» at a «Bifoaaly saeared backgrotnd charge for wavelengths auch 

greater than the isterionic spacing (Ref. 3).    Since this Is also a 

xequinneBt fdt aay pfeyaical organized oadllatlon to exist, this 

will always be true.   The aaawptlon la nade that the wavelengths 

coiisidetii* sust be sudi greater than the interionlc spacing (n^1/3, 

t^iere a   represents the «quHlbriua electron density). 

The aaplitudes of the fields in the plasma are asstmed to be 

small enough so that the eq-jatlons can be linearized (Ref. 11).    This 

means that the electric field strength, magnetic field strength, 

ordered electron velocity, pressure field strength, and perturbed 

electron density are considered first order perturbation quantities. 

Itee an equilibrium (zero order) electron density of the plasma 

which is inhomogeneous only In the x direction.    The plasma is con- 

sidered to be compressible and therefore has a finite temperature, 

itself a function of x.    The electron-neutral particle collision 

frequency is assuned to be energy-independent, independent of the 

ordered electron velocity, and constant across the plasma layer. 
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the plasaa ie coUi*iaD-dwinaccd, i.e., v of the order of M.    This 1« 

e good assuKptio.- for reentify typo plaswn. 

The plaraa is assuned Co be Isotropie with IM» cxtonal static ma*- 

ttetic or «lectric fields.    The plassui is assassd to 5»e ststiooacy. 

I.e., the drifting velocity is «ero.    »o exteniel static bodf forces 

ectirg on the particles in the plasea «re considered. 

The two transport pbenasen* of viscosity sad heat cmdaction are 

neglected in the plesas.   The spprcmiaatian then «sde is to neglect 

the terse in the equations of notion due to viscosity snd heat conduc- 

tion (Ref. 8).    The ibsolute error in the «pproxiaate solutions is of 

the order of the product of the distance through «hicfa a wave propa- 

gates and of the ratio of the tarns neglected in the equations of 

notion to those retained (Baf. 8).   Since the distances considered for 

propagating uaves in this case are very snail, the approxiaation 

should be reasonable. 

It is assuned that the plasms is sufficiently dense so that a 

description in terns of a force due to a gradient of the pertuxbed 

pressure field is valid.    This approach is taken in solving plasna 

problems in the ionosphere (Ref. 24).    The plasna presently considered 

is much denser than the Ionospheric plasma, and this assunption thus 

a more valid one. 

There are two important phenomena in acoustic wave propagation 

which do not appear in the hydrodynamlc treatment.    Physically, a 

plasma oscillation with a wavelength shorter than the inter-particle 

spacing is meaningless in terms of collective motion.    This has been 

discussed earlier.    The other phenomenon Is a noncollisional damping 
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mtfmct called Undau daaplng (Ref. 25).    The organlxed please oeci na- 

tions en deefNsd by e trenefci at enezgy free the wew to the enerur 

in the rendoa tbemel ■otlons cf electrons which are noviog at e speed 

dose to the wave velocity.    Landau devpiog becoaes lnport«it «ben the 

ecouatic wevelength epproeches the Oebye length of the plesas.    When 

die acoustic vavsleagtfa is saaller then die Debye length, collective 

■otlan is essentially destroyed (Ref. 3).    It will be assused that in 

regions «here a preesure field (acoustic vat«) exists, die acoustic 

wavelength will be larger then the Debye length; however, ainoe the 

plasae is inhonogenaovs, an acoustic wavelength is difficult to deter- 

adne.    The asstaeptlan will be verified in Appendix D by calculating 

the wavelength fron the dlspession relation for a lossy, hoeogenecus 

plasM having an electron density equel to Che electron density at 

discrete points slang the inhancgeneous plasm profile. 

It is necessary now to specify the frequency range of interest. 

The constraint on the plasea wavelength due to Landau damping deter- 

adnes a aaxlmue frequency of operation.    For a collisionless, hoooge- 

eous plasma, Boha and Gross (Ref. 3) have detemined the naxlnue 

frequency to be approximately fT f , where f   Is the plasma frequency. 

Rather than specifying a maximun frequency, the approach In the pre- 

vious paragraph will be used and frequencies larger than the frequency 

determining an acoustic wavelength equal to the Debye length will not 

be considered. 

The electron plasma frequency is basically a cutoff frequency. 

Below the plasma frequency,  the electrons can respond to an electro- 

magnetic field but above it they cannot follow the field.    Actually, 
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the cutoff is not that sharp.    Van Howen (Ref. *} states that below 

the plasMa frequeocy, acoustic waves ate stiungijr daaped by collisioaal 

effects.    It is ass used that the hydrodjnuMic approach (including 

collisonal dasapiitg) can be used to investigate ndumtic wave phenoaena 

at frequencies well below the plasm freq^Kutcy.   There is no reason 

why the electron collective ootien due to the interaction between the 

electroMgaetic field and the charged particles should not 8tll.: be 

described by the hydrodynaeic equations t since the electrons can still 

collectively Interact with the electranagnetlc field for frequencies 

belov the electron plasaa frequency.   A «ininui operating frequency 

would be the ion plasaa frequency t at whldi Ion «otloo would have to 

be considered. 

Rationalized MKS ualts an used for all ewcrlcal calculations. 

Baalc Equations 

The basic equations are the two Maxwell's curl equations and two 

equations fro* hydrodynanlc theory describing the dynoalcs of a con- 

tlenua.    These equations £om the nathenatical nodel for calculating 

the electronagnetic and acoustic fields in the plaena. 

Maxwell's equations are given below» «hexe It la aasuaed that the 

regions of space of interest are located far enough away from any mag- 

netic or electric sources so that their effect is negligible. 

v x I - -po || (1) 

V X Ä - ert||+ (n   +n) eV (2) 
O  at O 
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A oxtvectioB cumaat density tern has been included in the second 

equstlOQ.    The equtlibriisi electron density Is given by n    and the 

electron density perturbation (fluctuation) is given by n.    The charge 

accusulatlon or depletion is given by ne which Is in general a fimction 

of both tiae and position.    The charge of a single electron, e, is a 

negativ« ntaber.    The electron density fluctuation, n, can be either 

positive or negative.    The acoustic vector field, ^, is the ordered 

velocity of die electrons. 

The equation for conservation of noaentum for an inviscid, non- 

heat-conducting aedlusi is give» by Friedlander (Ref. 8).    This equation 

is soaetiisea called the hydrodpnasdc equation or dynwlc equation. 

(po + p) {I?* a'** ^|+ 7(Po + P) " ^o + n) f 

+ e(^ X ^ff) (no + n) 

- (po + p) v^    * (3> 

The equillbrlm quantities are subscripted and the perturbation 

quantities are note    The nass density is given by p and is equtl to 

the nass of an electron times the electron nunber density.    The colli- 

sion frequency is given by v and its effect is included in the momentum 

equation as a drag force proportional to the ordered velocity of the 

electrons. 

Equation (3) contains only one zero order term, Vp .    Friedlander 

(Ref. 8) has shown that for a plasma at rest with no static body forces 

acting upon it, Vp    « 0 even if the plasma is inhomogeneous.    This Is a 
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consequence of hydrostatic eqid'^Drltai.    Since p    * n K-T»  this con- 

dition would imply 

% * V(0oST) - STVno + h^o™ ■ 0    • <4> 

where K_ lä Bultssinr.'» constant and T is the plasma temperature. This 

Imposes a definite relationship between n and T. It is not, however, 

the relationship which has been assumed, i.e., that the temperature 

profile follows the electron density profile in form. This type of 

temperature variation is assuaed because it is a good approximation 

to the temperature profile in a reentry type plasma where higher 

temperatures result in more ionlzation and give a higher value for 

n . It is concluded that 7p ^ 0. This case is discussed by Burman 
o o 

(Ref. 16). Equation (3) must now be modified to include a zero order 

term which will cancel the Vp term, since Vp j 0. The modification 

is written: 

(p0 + p){||+(^)^+v(po + p).(po + p)(?o + l) 

- e(no + «) ^ + «^ * yoH) (no + n) 

" (P0 + P) v^ , (5) 

where p f   is the zero order term required to balance the zero order oo 

pressure gradient.    A first order term, p ? + pF , is also Introduced. o o 

The force term (p    + p)(F    + F)  is not due to any external static fields oo 

or forces since these are assumed negligible, but Is due to an ambi- 

polar diffusion electric field due to the static pressure gradient. 
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The zero order part of this force tern balances the static pressure 

gradient while the effect of the first order part is considered to be 

negligible in the first order part of the momentun equation.    The first 

order conservation of mooentuB equation then becomes: 

m(no+n) |l!+ (^7) ^|+'p - e(no H *+ e^x uoÄ) (ao+n) 

- m(no + n) vV    . (6) 

Ike exact equation of conservation of mass is given by the con- 

tinuity equation 

|?(po + p)+V.|(po+p) (V^)|-0    • <7) 

nie vector V   represents any drifting velocity of the plasma and has 

been assumed to be zero.    In addition, since the equilibrium mass 

density is not a function of time, Eq.  (7) can be simplified as follows: 

|f+7.|(po + pp|-C    . (8) 

It is convenient at this point to linearize Eq.  (8).    This Is done by 

neglecting the second order term pV inside the brackets.    As stated in 

the basic assuaption, the amplitudes of the disturbances are small 

enough so that the linearization approximation Is valid.    Then 

|^V. poV    -0     . (9) 

Applying the vector Identity ?•(($) ■ $ V't + A'V^, one can write 

Eq.   (9) as 
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a — ■»- ■»    7«V + raV'Vn   - 0    . (10) 
at O O 

The term V'v'p    Is neglected in the majority of works on acoustic wave 

propagation (Kefs. 5, 14, IS, and 16).    This is valid for a hoaogeoeous 

plasma (since Vp    • 0); however, this assusptlon may not be valid for 

a plasma with steep electron density gradients.    For generality this 

term will be retained in this derivation of the wave equations. 

Now combine Eq.  (10) with the approximate adiabatic equation of 

state for a perfect electron gas: 

?- - Y f:M (ID 
0o Ik) 

where y Is the ratio of specific heat at constant pressure to specific 

heat at constant voline.    Hie quantity y is normally assumed to be 3 

for an electron gas (Bcf. 25).    For a perfect electron gas, take 

P0 - n^T (12) 

and 

p - nKgT (13) 

where K   is Boltzmann's constant and T Is the temperature. 

Multiplying both sides of Eq.   (10)  by y/üo and using Eqs.  (11), 

(12). and (13) yields 

|E+ro   (_^)v.^+ ml—Mv-Vn    -0    . (14) 3t o\m/ \m/ o 

The term in parenthesis is the square of the acoustic velocity (rms 

thermal velocity) in the electron gas. 

u    » v  o     V      m (15) 
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The final fom of the cquatloe is then 

&■ + «n iPv^ + mi^V'Tn   - 0    . (16) at       o o o     o 

Now assuK that all of the field quantities have a steady-state 

tine dependence expressed by the factor e^u .    This factor will be 

suppressed and the field quantity aaplitades will be considered as 

phasors having coop lex values which are fmctions of position only. 

Then If 3/3t is replaced by ju, Eqs. (1), (2), and (6) are linearised, 

and Eq.  (16) is used: 

V X f - -jMü H    , (17) 

V X H - Iwe    i + n   eV    , (18) o o 

«n (Jw + v)^ - n   el - Vp    , (19) o o 

jup + mn ^V'V + m^V'Vn    - 0    . (20) O 0 o        o 

Compressibility and the Propsgation of Pressure Waves 

It will now be shown that an acoustic or pressure field can 

exhibit wave behavior only In a compressible plasma.    For simplicity, 

assune a plasmr. that is homogeneous, lossless and of infinite extent. 

The plasma is excited by a steady-state oscillator at some point which 

la far from the observation region.    Equilibrium quantities are sub- 

scripted by a zero.    The first order perturbations are not.    The basic 

equations were taken from Stix (Ref.  7) and specialized to a one- 

component electron plasma.    The equations are linearized by neglecting 

products of all first order terms since small perturbations are assumed. 
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first tfliasi^r  m incättpraiftibl«, or «eld» plmm* ulth «em 

teaperatur«. 

»o ' "oV " 0 (21) 

and 

p - nl^T - 0    . (22) 

The convectloo current deogity is given by 

J - a eV   . (23) 

The conservaMcn of Boaeuem «quetloa is 

m |H. - el    . (24) 

since p » 0. 

The conservation of charge equation is 

|0r+v4-0    t (25) 

where the charge density is p - en. 

From Gauss'   law, 

V't - p/e^ - en/cÄ    . (26) o o 

Taking the partial derivative of Eq.   (25) with resect to time gives 

3t 3t      0    ' (27) 

Taking the partial derivative of Eq.  (23) with respect to time and 

using Eq.   (24)  gives 
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■*        SB 

|i.-^J    . (2.) 

Si&sticutlng Eq.  (23) into Eq.  (27) and using Eq.  (26) gives 

or 

i!E*,..2 
3t2 P 

+ «f n - 0    , (29) 
3t2 

where 

% 'JUT (30> 
is the electron plasna frequency. 

Although the spatial dependence of a pressure field cannot be 

detendned in this case (sine« p « 0), acoustic phenomena can be 

related to charge fluctuations, since the acoustic wave results from 

the collective motion of the particles.    From Eq.  (29) it is observed 

that the collective motion of the electron density perturbation (or 

charge fluctuation since p - en) is oscillatory in time but is spa- 

tially independent.    This disturbance does not propagate. 

For a compressible plasnu, Eqs.  (23), (25), and (26) still apply 

but a pressure term must be included in the conservation of momentum 

equation. 

mn    || » en    E - Vp    . (31) 
O   dt 0 

For a finite temperature, 
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ro        OB 

and 

9 - nKjT    . 

The approximate adtabatic equation of atate for an ideal gaa is given 

by 

2- 
ft) 

Using Eqa. (23), (23), (26), and (31) and the saae procedure used 

previously gives 

or 

^2. + u
2n - ^ V2n - 0 , 

....2   P   ■ * 

^.+ ^-^72   0 , (32) 
3t2   p   0 

where u   is the acoustic velocity (rns thezsal velocity) In the elec- 

tron gas and is given by Eq.  (15). 

For steady-state time dependence ^ut
t p has the form P1ev^(,, "•' p'r j 

+ p2e\ P*r/. where pj and p2 are constants.    This Is the mathe- 

matical representation for a propagating plane wave.    If this form of 

p is substituted into Eq.  (32), the dispersion relation Is found to be 

a)2 - u>2 + u2 K2     . (33) p       op 

It is concluded that a pressure wave can propagate In a compressible 

plasma with a wavelength (X    * 2IT/K ) determined by Eq.   (33)  for e p p 
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given frequency.    This is identical to tits equation obtained by Böhm 

and Gross (Ref. 3). 

For an iaboeogetieouB plasaa, it is not possible to describe the 

acoustic wave in taws of a unique propagation constant.    It is also 

fouad that sn acoustic wave is coupled with an electroaagnetic wave in 

an iohoaogeneous plasaa.    The propagation of acoustic waves in an 

inhoangeneous plasaa is described by the coupled wave equations derived 

in die next chapter. 



CHAPTER III 

DERIVATION Ot THE COUPLED WAVE EQUATIONS 

Full-Wave Varlablx 

In a hcnogeneous plasM, the electrougneclc field« «ad the dynamic 

(plasma) field« can be separated Into two dlatlnci «odes.    Energy 

exchange between die two modes can occur only at an Interface and each 

mode propagates Independently of the other.    There then exists a pure 

electromagnetic field and a pure dynamic (plcsma) field.    The electro- 

magnetic field contains all of the magnetic field and the dynamic field 

contains all of the charge acctnulatloa (Raf.  14). 

In an inhomogensous plasma (Ref. 6) the separation of the various 

fields into pure electromagnetic or pure dynialc fields is impossible 

due to the spatial variation of the plasma properties.    Thus an electro- 

magnetic field quantity would consist of an electromagnetic component 

plus a dynamic component and therefore could not be truly a transverse 

wave.    Similarly, a dynamic field quantity would consist of a dynamic 

component plus an electromagnetic component and therefore could not be 

truly a longitudinal wave.    This is a fwdamental description ot the 

coupling between the two field quantities.    It is difficult, however, 

to investigate quantitatively the coupling effects by evaluating the 

electromagnetic component and the dynamic component in a given field 

quantity.    These components are referred to as a quasi-electromagnetic 

mode and a quasl-plasma mode (Ref.  14).    Since the given field quanti- 

ties are described physically by the sun of these quasi-modes, it la 

desirable to obtain solutions In terms of the total field quantity, 

24 
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i.e., the sue of the aodes.    These ere referred to In the literature 

cs full-«*avB verifies  (Ref. 6), and are sinply the field quantities 

described by the basic equations given in Eqs. (17), (18), (19), and 

(20).    The wave equations describing vave propagation in m inbonoge- 

neous plasas are derived for the full-wave variables using the two- 

diaensionsl geoaetry of Fig. 1. 

Vertical Polarisation 

The electronagnetic end pressure fields are shown in Fig. 2 for 

a vertically polarized incident electroaagnetic wave. The electro- 

■agnetic field quantities E and H are vectors. The pressure p is a 

scalar quantity represented in Fig. 2 ss a wave propagating at some 

angle 6 . A steady-state situation is assuscd with all field quan- 

tities having an e^u tiae dependence. The radian frequency of the 

electroiBagnetic wave is u. The e^u factor will be suppressed in 

the derivation since it is cooaon to all field quantities. 

Since the plasma is hoaogeneous in the x direction and the 

incident wave is a plane wave, there is no loss of generality In 

assuning that the fields do nor vary in the z direction and 3/3z « 0 

for any field quantity. 

The electric field has coaponents E    and E .    The magnetic field 

has only a z component, H .    The velocity (ordered electron velocity) 

field has components V   and V .    The pressure field has only a magni- 

tude p.    These are all complex phasor quantities containing both 

amplitude and phase information.    They are also functions of the 

spatial coordinates x and y.    Instantaneous values are found by 
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DIELECTRIC PLASMA FREE SPACE 

&~ 

Figure 2.    Vertical Polarization 
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tsulUpljiag by e**1 and taking the real part. 

The linearixed basic equations ate given again for reference. 

7 X I - -juw    S (34) 

7XH-jue    E + neV (35) o o 

■n (j« + v) V - n e I - Vp (36) o o 

j«p + Ä ^ ?.? + «u2 V«%»   - 0 (37) * r o o o o 

Eqoatiooa (34) to (37) «ill now be written in contpcmeot font uaicg 

the field caaponents listed above,    the approach used is to solve for 

all of die field coaponeats in ten» of B   «nd p.    The wave equations 
m 

«ill be derived for H   and p and the solutions will allow all of the 

fields ia the plaaaa to be detemined. 

Fro« Eq.  (34). 

3E        3E 
ll ' if - ->% HS    • <38> 

From Eq.  (35), 

and 

From Eq.   (36), 

m 
-~- Jue    E   + n e V      , (39) 3y      J    o   x        o     x    * 

3H 

-lf-^oE
y 

+ VVy    ' (40) 

mn (jü) + v) V   - en    E    - p-    , (Al) o •' x o    x      3x 
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and 

From Eq.   (37)» 

an (jw + v) V   - en    E    - -^    . (42) 

(3V        3V \ 3n 

For ainpllcity, define 

A ■ Jw + v    , 

and 

Ü - 1 - 1 v/w    . 

Since the collision frequency has been assumed constant, neither A nor 

U are functions of the spatial coordinates. 

Solving Eq.  (41) for V   and stistltuting this Into Eq. (39) gives 

(u>2  \ 3H „ 

where u2 has been defined in Eq.  (30).    Now define the two quantities 

and 

c    « 

0 p 

0,2 

1 - -^    , (46) 
<«)zn 

where e is the complex permittivity of the plasma. 

Equation (44)  can then be solved for E    to give 

3H 
E    --i-—^      e      IE- (47) x      jme    3y      jueAo 3x K  " 

Solving Eq.   (42)  for V    and substituting this into Eq.   (40) gives 

,     3H 
E   ---r^-^ + T-Vl2    . (48) y juie    9x      jucAm dy 
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Solving £q.  (Al) for £    and substituting this lato £q.  (39} gives 

V    * .-JL £ _ ^>—i. f£ (49) 

Solving Eq.  (42)  for £   an4 substituting this Into £q.  (40) gives 

y jucAo    3x      cAm    3y    * v M/ 

Equations (47) to CiO) agree with those obtained by Walt (Ref. 22). 

It Is concluded that all flfdd quantities In the plasma can be deter- 

»insd If solutions for H    and p are found. 

Since the plasma Is homogeneous In the y direction» the y ccnpo- 

nent of Che propagation constant» denoted by K , Is conserved for all 

x values.    The y component of the propagation constant, K . of the 

plane electromagnetic wave In the dielectric is given by 

K   - u./u e K. sin 6,     , (51/ yVood l    * 

where Kd Is the dielectric constant.    Following references 5, 12, 13, 

15, and 16, the assumed forms of the magnetic field and the pressure 

In the plasma are 

JK y 
H, - H (x) e    y (52) z        z 

and 

JK y 
p - p(x) e    y      . (53) 

All other field components are assumed to vary In the same manner. 

The problem then becomes essentially one-dimensional, since  from 
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Eqs,   C52>  and <53), 

3H 
 x 

jK    K and 0-1», P 

describe the y variat'oas of H   and p.    Therefore, 9/3y can be replaced 

by jK    and the derivatives with respect to x become total derivatives. 

The component foras of the basic equations will now be «ritten 

with Che y dependence of the field components assumed above.    Since the 
iKy 

factor Is cooraon to all the field components» it will be suppressed. 

dE (x) 

Hr- - JKy Ex(x) • -^o H
I

<x) (54) 

jK   H^Cx) - j«eo Ex(x) + noe Vx(x)        (55) 

dH (x) 

dx - J«c    E (x) + n e V (x)        (56) Joy oy 

x   A V (x) - en   E (x) - ^5^- o       % ox dx (57) 

mn    A V (x) - en    E (x; - JK   p(x) (58) o       y oy jy^»' 

jü)p(x) + mn 
/dV (x) \ 

% \-^r + JK
y 

v
y^>j 

dn 
+ mu2 V (x) -ir - 0 o   x dx (59) 

The field components are now expressed as functions of x only. The 

functional dependence on x will be assumed and in the following deri- 

vation thr  notation H (x) will be replaced by H and similarly for the 

jther field components. Equations (47) to (50) will be used together 

with Eqs. (54) to (59) to derive the coupled wave equations. 
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Taking the derivative of Eq.  (56) with respect to x gives 

d^H dE . 
__£.jwe   -r^ + ef 
.2        J    o dx dx V oVy) 

(60) 

where the product n V   must be retained in the derivative operation 

since n   «od V    axe fusctioos of x.    Substituting dE /dx found from 
o y *     y 

Eq.  (54) and n V    found from Eq.  (SO) Into Eq.   (60) gives 
o y 

d2H 
 2 

dx2 
Jwe [" jwy    H    + jK E J    o   z        y x ] 

4 e 
.    r    en      dH       jK e^   1 
d o       z     J y c    j 
dx  I  JweAa dx   "   eArn   PJ ' 

Substituting E    foimd fron Eq.  (47) Into She equation above gives 

d2H 
  - K2H    - uc K 
dx2 0 ' 0 y I ue    z      juicAra dx I 

+ e 
.    r      en      dH       jK e       1 

dx [    JweAm dx eAm    K J 

where K2 « u2u e .    Expanding the derivative In the third term on the 
o o o 

right-hand side of the previous equation, noting that n    and £ are 

functions of x, and performing the necessary multiplications gives 

d2H 

dx2 

K2 K e 
-K2H   --JU   -T-V^ o z      e      z      je Am dx 

P J P 

d2H        ,    d2H       [d{l/t] 
 l+l 5.+      V    P/ 

J2 ej2 Ldx. dx£ p dx''        *- 

dH 
 2 

dx 

je Am dx 
P 

J Am    ldx. 
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After soBe slopllflection: 

™-jE + f   \_B/   *+ K2t .K2 H .._xe n_£/ 
^2 p^dxjdx       Lop       yjr     uttüp|_dxj 

Since 

/e-}      L.^ 
dx 2 dx      * c 

P 

the final  form of the first of the two coupled differential equations 

1.) H    and p is given by: 

d'H 

dx* 

,    de 
1 E 
e    dx 

P 

dH        r T 

^+    K2e    -K2    H 
dx        j^ o p       yj    x 

P           "i 
eK -    de 
_JL 1      _£. 
wnU e    dx 

P 
L                     J 

^ -^ P   • (61) 

The coup litt«, in this case, is introduced by the tern involving p on 

the right-hand side of the above equation and the coefficient of p is 

called the coupling coefficient. 

The second coupled differential equation will be obtained from 

Eq.   (59), repeated here for rsference. 

[dV "I dn 
-r-^ + JK V     + mu2 V   -r-^ - 0    . 
dx y yl        o   x dx 

Taking the derivative of V    (Eq.   (49)) with respect to x, multiplying 

V    (Eq.   (50)) by jK , substituting for V    and replacing th€se terms y -   y x 

in the above equation by the expressions just  found givet 



'wo + nn »r ' r o o dx lucAn    z      cAon    dx ( 

+ JK 
dB        JK c 

e z     •* y o 
y I    jueAn dx       cAnn 

+ BU2   !jL-«   -„l£_^ 
o I weAa    z      tAon_ dx 

]dn 
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Perforaing the indicated operations and recalling that n    and £    are 

functions of x gives 

d2p 

dx2 
i'i\* 

(   eK n    r    de 1     eK   f*» 1) 
(62) 

tchere Y   is defined as 

2 _   w_ 
YP "   u2 

o 

_-2_ ^ 1 _ -X _ j 
2        J  0) 

(63) 

Equation (62) is the second coupled differential equation in H    and 

p.    The coupling, in this case, is introduced by the term Involving H z 

on the right-hand side of Eq.   (62).    The two Eqs.   (61)  and (62)  are 

identical to those derived by Burman  (Ref.   16)  If the collision fre- 

quency is assumed constant and the third tern on the left-hand side of 

Eq.   (37) is neglected (which is not necessarily valid for the plasmas 

considered here).    When this term is retained in the derivation,  the 
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coefficient *t dp/dx in Lq.   <62)   is modified »lightly  (the coefficient 

in Buman's e«iuauon is -l/c  n    d/dx  (t n ),  and the coupling coeffi- 

cieut coutains an additional tern which Involves the derivative of the 

electron density with respect to x).    The coupling coefficients In both 

Eos.   (61) ana (62)  depend on either «ic  /dx or dn /dx.    If the plasma is 

homogeneous, both of these factor* are zevo and the equations «re 

uncoupled.. 

Hortrootal Polarisatioo 

An incident electromagnetic ;*av«, horixontally pol^cized. Is 

uhown in Fig.  3.    Again, there is no loss of generality In assuaing 

that the field component» oo not va^y ia Hut z direction, with 3/3x • 0. 

The electric field has ally a z cottpenent, E . but now the magnetic 

field has components H   and H .    The ordered electron velocity will 

be assuned to have components V , V , and V ,    The pressure field 

represents a scalar qu    .ity »hieb, can be a function of x and y. 

Equations (3<0 to      '   are now written In component form for the 

case of horizontal polar«, .atlon: 

3E 
~ - -luu H (64) 3y J    o x 

W ' -^oHy (65) 

3H 
,      -- 0 - r. eV (66) 3z o    x 
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Figure 3. Horizontal Polarization 
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au 
—• • 0 - n cV (67) 3z o   y 

m     3H 
^JL . _JL . Jweo Ei + vvi (68) 

[3V      av      av I dn 

*rW*tfr9Xt>\*rm0       (69) 

Since H   and H   do not vary In the z dixection» Bqs. (66) and (67) 

show that V   and V   are Identically xero evezyvheze In the plasma. 

Equation (68) Indicates that there can be a a component of the veloc- 

ity; however, it has been assuMd that all field ccatponents are 

constant In the z direction so aV,/3* ■ 0.   Also, since V   and V   are z x    y 

zero everywhere, 9V fix • 0 and 3V /3y - 0. Equation (69) then becooes x y 

Jwp ■ 0 

or 

This implies that the pressure field Is xJ^nticslly zero everywhere 

in the plasma; hence, the acoustic mode Is not excited. 



CHAPTER IV 

SUMESICAL SOLUTIOSJ OF THE COUPLED WAVE EQUM'IOSS 

Coupled ^watioos 

the tem Mcoupled equations" describe« a set. of simultaneous 

differencial equatioos with the iollmiin^ properties (Ref. 26): 

(1) There ig oae independtnt vairf.a^le which in this derivuticn 

Is the distaoce x. 

(2) Ute »ueber of equations is the sase as the n&eber of depend- 

ent variables. 

(3) In each equation one dependent variable appears in deriva- 

tives of higher order than the others. The terns with this variable 

are called "prlndpi»!    tene and the regaining ten» "coupling" terns. 

(4) The principal ten» contain a different dependent variable 

In each equation, so that each dependent variable appears In the 

principal terns of one and only one equation. 

ClenoK and Heading (Sef. 27) add one sore property when the equations 

describe wave propagation: 

(5) In a homogeneous mediro the right-hand sides of the equa- 

tions vanish since the coefficients of these coupling terms contain, 

as factors, derivatives of the properties of the medium.    The left- 

hand sides then give the characteristic waves.    Equations (61) and 

(62) have all of the properties described above. 

There are several methods which can be used in solving coupled 

wave equations.    Solutions can be found by successive approximations 

where the first approximation is to neglect the coupling terms and 

3? 
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solve the resulting equations,    the values obtained for the dependent 

variables are sybstlitited In the coupling tems and the resulting 

equations are solved to give a better appvoxisatlon.    Where a coupling 

term is  large» the taethcd of successive afproxinatioBs cannot be used. 

When the coupling can be neglected, UKB solutions can be obtained; 

however» these solutions fail near regions of reflection or coupling 

(Ref.  26).    The two equations can be mccupled by ccablning the two 

into a single fourth order differential equation in one dependent 

variable.    This equation nust dien be solved,    the two second order 

equations can also be reduced to four first order equations which are 

also coupled.    These can be solved by matrix aethods.    Butsian (Ref. 15) 

gives four different aethods of solution for the coupled wave equations; 

however, a slowly varying «ediuo Is assaned.    Another possible solution 

is to integrate nuserlcally the coupled wave equations.    This is the 

nethod used later in this chapter.    The main advantage of this method 

is that coupling ten» are not neglected and the solutions axe valid 

in media with rapidly varying properties. 

The existence and uniqueness of solutions obtained for Eqs.  (17) 

to (20) are considered here.    Sancer (Ref. 20) has discussed the bound- 

ary conditions which yield unique solutions to the linearized warm 

plasma equation« which are used in this derivation.    Solutions to these 

equations exist,  for simple geometries. If one requires that 2 + M 

scalar boundary conditions are satisfied at each boundary.    The nisnber 

of different types of particles, M, considered in the equations of 

motion is  1 for an electron gas.    The boundary conditions used are the 

two electromagnetic boundary conditions  (continuity of tangential E 
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sad H), plus a single acoustic boundary condition which  depends on the 

type of boundary considerJd      Therefore, solutions  to the equations 

can be found.    The two different acoustic boundary conditions are the 

vanishing of the noncal component of the electron velocity and the 

continuity of the pressure across a boundary.    Sancer shows that eithe*- 

of these conditions when used with the two electrooagnetic boundary 

conditions leads to a unique solution. 

Plasma Profiles 

The plasmas of interest have steep electron density gradients 

near the wall (x •• 0)  rising Co a peak value at a distance very near 

the wall.    The electron density then decreases from the peak as the 

temperature becomes lower aud lonlzation is less.    Consideration is 

given to very thin plasaa "sheaths" where the region of Interest is 

5 mm or less «way frcm the wall.    Electron density,  temperature, and 

collision frequency profiles are Illustrated for a typical sheath in 

Fig. 4,    The temperature profile Is similar in form to the electron 

density profile.    This Is due to the fact that the number of electrons 

depends on the degree of lonlzatlon which iu turn depends on the 

temperature.    For a reentry type plasma, the high temperatures are 

associated with aerodynamic heating which occurs when a vehicle 

reenters the atmosphere.    The collision frequency profile is almost 

constant across  the sheath.    As a first approximation,  the collision 

frequency will be taken to be constant.    The collision frequency will 

be larger for larger peak electron «tensities. 

An electron density profile that has a linear increase  from the 

wall to the peak is used.    This profile is simple enough  for a fairly 
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Figure 4. Typical Plasma Sheath Profiles 
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straightforward nunexical analysis; however, by taking the lir^ar 

increase near the wall large enough, a meaningful study of the effect 

of plasma inhomogeneity on press-re wave propagation in the plasma can 

be made.    There are two basic rrofiles considered with the linearly 

increasing electron density.    The first profile is shown in Fig.  5(a). 

In this case, the electron density is assuned to decrease abruptly to 

zero at the outer boundary.    The outer boundary is then Just a plane 

dividing the plasma and free space.    The second profile is shown In 

Fig. 5(b).    Here the electron density beyond the peak is taken to be 

a constant equal to the peak electron density.    In this homogeneous 

region,  the wave equations are uncoupled.    The electromagnetic and 

acoustic waves propagate independently with propagation constants 

delsrmlned by Eqs.  (129) and (130), respectively.    It is shown later 

(Fig. 22) that the acoustic wave is attenuated rapidly in this region. 

Since the acoustic wave decays to a very small fraction of its ampli- 

tude at the peak within a very short distance from the peak, the model 

is shown as semi-infinite in the figuta.    The temperature profiles are 

taken to be linearly increasing also, and follow either Fig.  5(a) or 

5(b) in form.    The collision frequency is assumed to be a constant. 

Boundary Conditions 

First consider the boundary conditions at the wall (x « 0).    For 

convenience (in the numerical solution and the approximate solution) 

the value of K   at x - 0 is considered to be a known constant (0.1 + 
Z H^O) 

J0.1 in all causes) H (0).    Using H    - ■;      ■    and Poynting's  theorem in 

the dielectric,  and assuming that an area of 1 in2 is considered,  this 

value of H (0)  corresponds  to an Incident electromagnetic wave with a 
Z 
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Figure 5.    Plasma Profile Models 
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pover of fron 6 BM to 24 nw (for R »  1 or P- « 0 above), which is    an 

easily obtainable power level.    The two electrocagnetic boundary 

conditiona can be used at this boundary to determine the amplitude of 

the incident electromagnetic wave and the value of the reflection 

coefficient.    Using these two boundary conditions gives 

n . cos G,  H (0) - E (0) 
R .    d        i I ._Z..>_ (70) K     n. cos 6, H (0) + E (0)    f v/u, 

d •     z y 

where n. is the characteristic impedance of the dielectric, and 

H (0) 
H
O-IVR    * <71) 

where H    is the amplitude of the incident electromagnetic field.    The 

electric field at the boundary, E (0),  can be compnted from the H    and 

p solutions in the plasma using E^,   (48).    The acoustic boundary condi- 

tion used at this dielectric-plasma interface is the vanishing of the 

normal component of the electron velocity (V ).    From Eq.   (49)  this 

results in a specification of the derivative of the pressure at the 

boundary, , 

dx 

eK n (0 ) 
._JLi> HOT) (72) 

x-0 o 
I 

where n (0 )  is the electron density a.:  the wall. 

Now consider the boundary conditions at the distance corresponding 

to the peak in electron density.    The two electromagnetic boundary 

conditions are  the same for either of the two plasma profiles  consid- 

ered in Fig.  5.    The acoustic boundary condition will be different  for 

the to profiles.    For the profile in Fig.  5(a)  the rigidity boundary 

condition is used which imposes a zero normal component of the electron 

velocity  at t'lis boundary.    This implies  that all of the electrons 
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taking part In the collective motion ate reflected at ttte bouncary «ad 

none penetrate into free space.    Using Eq.  (49), the derivative of thfi 

pressure at this boundary is detemlned: 

dx 

eVo(d') 

where n (d~) is the peak electron density and H (d~) is the amplitude 

of the magnetic field at this boundary.    For the profile in Fig. 5(b) 

the dynamic boundary condition is used.    This acoustic boundary con- 

dition states that the force on one side of the bowfovy must balance 

the force on the other side of the boundary.    This imp lies i^at the 

pressure be continuous across th« boundary exempt at m interface 

between a compressible sjedlum and an inccapresslble medLum.   The kinetic 

boundary condition of continuity of the normal camponent of the elec- 

tron velocity is also used. 

The condition of continuity of E at the outer boundary (x • d) 

determines the derivative of H at the outer botndary. For the pro- 

file of Fig.  5',), using Eq.  (48)  tor E   gives 

dH 1        z 
ju)t(d~) dx 

eK 1      dH2 

xmr 
+ u)e(d-)Ä»p(d') " ' j^T *r 

. (74) 
x»df 

Now assune that the electromagnetic field for x > d has only an outward 
-jK    x ox going cociponent of the form e , where 

K     . ^2  _ K2 (75) 
ox o        y 

is the x component of the free space propagation constant for electro- 

magnetic waves.    Solving Eq.   (74)   for (dH2/dx)x-d_, gives 



dK 
: 

dsT 

eK 

x«>d" 
i-j-Zpid-)  ~ jc   (d*-)K    H.Cd*) 
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A«    r'~ '       ""p*" '"ox's' 

It is shown In Appendix C that  for the peak electron densities of interest, 

the second term on the left-hand side of Eq.   (74)  is  conpletely negligible 

compared to the other terms In the equation.    Therefore,  to a very good 

- Je^KA^     • (76) 
dU approximation z 
dx 'x»d 

A slightly different expression results  for the derivative of H    at the 

outer boundary for the profile of Fig. 5(b),    If E, is taken to be 

continuous at x « d and Eq.  (48) Is used for E , the expression for 

the derivative of H    at x - d becomes z 

dH 

jue^d") &x 

eK eK 

x«d" ue (d~)Am 
P 

p(d') - 
ue (d )Atn 
P 

p(d+) 

juc (d ) \ / 
(77) 

Since p and K are continuous and e (d~) • c (d ) at x * d, 
z P      P 

dH 
 i 
dx x-d -vH

z
(d+)  • rs) 

where y,     ie  the x component of the complex propagation constant of the 

electromagnetic wave in the homogeneous plasma region. 

Solutions  for all field quantities in all three regions  can be 

obtained from six boundary conditions,  three at each boundary.    In 

the numerical solutions,  four boundary conditions are used to solve 

the two second order coupled wave equations  for the fields in the 

plasma layer for the profile of Fig.  5(a),    The conditions are: 
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U) H^/0 > - 0.1 + 30.2 (79) 

(?) ^ i      + -      y f H,(0+) (90i 

dH.  , 
<3) -sr \ • -It K      H (d ) (31) 

The bouBdaiy at x • d fi>r th« pV^saa piwfiXc of Pi$T 5(l>> is not 

associated with boundary coadl&io&s xttlaccd to *& intsufmot Hvidint 

tvo diftereot »ftdin, but to a» tnwtface «^«xc til* fona of th« plasMt 

profile chanfies (to* sadluB reeains ö* sans).    Oae cstirc vcka«vn is 

introduced in tM« ease—t»* pvessor* field Ut th« haaogeaeoufc rs^ioa 

which did nor, exist is th« case of fig. 5Ca), since the region for 

x  ' d -jas free apace.    Xartesd of the siegle acoustic beundaiy ccodi- 

ti^r», cvo independent acoustic bowdacy conditions are need ac this 

interface,    the first on« is the cfotiauicy of the presstfic across the 

interface, or 

p(d') - p(d+) (83) 

The second oae is the continuity of the notnal coaponent of the 

ordered electron velocity across the interface, or 

Vx(<r) - V^Cd*) (8^) 

which gives  (using Eq.   (49)  and the continuity of H    st x « d) 
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If oaly «i o«:jcie§ ptcssmc war» I» zmived to exist in tSw iiottogcsous 

««Statt Cao wflscti««), föl» ieecwes 

«tiete Y ^ is tfee z coapoiut&t of th» coa^lex propagatl-jQ constxtt of 

tJ»« »«>a»tic ««ve in the fcd«Of«ö«o«B plasn* tegigo.    The ordin«ry 

clsc^wcau^oetic bounded cooditlons (E   and H   contitvuou») ate u&td at 
y * 

thw x » d boistdaxy for profile (b) also.    The boundary conditions used 

in the nuoerical solwtion for profile (b) are: 

(1) H (0+) « 0.1 + jO.l (87) 

<2> 

H2(0+) « 0.1 + jO.l 

dx 

eK noCO+)          . 

»E   ! 

(88) 

<3> ^ * -YW 3^(d ) (89) dx    j^« ha    . 

(4) ^ I • -\'      p(d+) (90) 

(5) P(d') - p(d+)     . 



Ftgitg Mfferrao» <upcricii! £clatAy 

Soltttioos e< the two c««^S«4f ««** cq«a£laA> «.rlJl be dbtcibed by 

repl«ci3>g tha tao oreiwoy dlffiteBfttiJti «qu^ioos vlth tb«ir Clnitr 

differepc« appr^gOsMtloRs.    Th» tue «^t»Ziass «n 

 * ♦ * j~ + »   - C? (91) 

«I 

«sue 

££. + jj Ä + Ep « FHr    , (92) 
dx2 

where the priacipai teras are oft the left-fewid side of th« equations 

and the coiqpli&g ten» «re oa die iright-hoad tide. The coeffldenta 

are defined as follows; 

1    K 
A" -—-^   * (93) e    dx 

B « K2e    - K2    , (94) op       y    » 

C--^ 14-^1    , (95) uniU [%**] 
i    de 

P 

«2  L        a.2 "J 
«-   I , P       . v ! - K2     , (97) 

e-^H^ ^k-^-^ . c^) 
»K ft   r,    de 1    eK    da 

we      I c    dx  I       we    dx o L P     i       0 
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fcusit« di^fefChCt «p^r^ciCAtioEU will  iovc-lwe --ai^ie* ^^sa:Citi«s,    Cofe- 

9«t«Xi<aMi ta«cl«ist the cafe^lez ^taectitl'»» iro händig »«siI« tuls^i ibe 

OMplm «fidMStic c«pJblUue« of tfc« r^taAS iV lMM%\i»i* sn the C5C 

6606 coaptsttr.    Ih« m^A a4$Taat«gc of uclsg tCj* cseeric«! sciutjoa 1« 

»feat the cewlia§ £««K£ «nt rstjdocd i« tit«- fiel^i stluticm. 

Sises öt* «^^»tiess «r* erdta&ry dtfftraiäitai (^Q»tlos»t 2ft one 

i&ivpmiäaat vtriäals, a, Che fitst »it*p Is to divide cts« x-dxis Ineo 

a EMkAcr of tqmily «gffc«4 P?1A£S a« sb<»m in Fig. 6.    the step »i?e 

1» |jßdle«£ftd by h.    la tjbfi fialtc dif£*tasc« ounerical solution, ehe 

variable 1 corrc&poods to diacret« points o« the x-axi».    Solutions 

for H   <nd j> will consist cf vslues of H    and p computed, at x values 

corrsspooding to i, fro« tb« finite difference approximations to the 

diffsireotlai equations.    The fields computed at the discrete points 

will be designated as H .  and p.. 

Letting f represent either field quantity,  die central differ- 

ence approximation used for the second derivative is  (Ref.  28) 

£f s 
fn-i: 2fi * fi-i t (99) 

dx2        h2 

where Che error associated with this approximation Is equal to 

h2  „ 

where  j*j  <^ 1 and M<, is the largest value of the  fourth derivative of 

the  fmctioD in the region of Interest.    The  finite difference approx- 

imation used for the first derivative is  the centra.! difference  formula 
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Figure 6.    The x-Axia for a Finite Difference Solution 
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ihti. 2S} 

tri<«te thf error Msoci«ted wl'ii this appraxlaatioo li equal to 

«diece  i«| f, 1 and M3 Is £he largest value of the third derivativ« (a 

the xegion of iotszest.    Vben these approxiaaticas are used for the 

derivatives is Eqs.  (91) wd (92), the two equations becoae (1» finite 

difference form): 

Ss(,H-l) " mti * Hs(i~l) + A I Hz(l-»1) ' Ht(t-1) j 
h2 I A J 

+ EUzl - Cp1 (101) 

and 

pi+l - 2pJ ^^^4 h2 

+ Epi • FHzl     . (102) 

The solutions for E .  and p. now require the solution of 2(N+i) linear 

algebraic equations where N+l is the number of points.    The solution 

of 2(N+l) equations is required since H      and p, must be determined 

from Eqs.  (101) and (102) at a total of N+l points.    To improve the 

accuracy of the nunerical solution, the step aize h can be reduced 

(the errors are proportional to h2); however, this would Increase N, 

requiring the solution of a larger number of algebraic equations. 
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Ife* ?»pl«otMEst cf tbe $Ufecestl<] cquatls«» by tt^e tide« differ- 

tmet «^proadLaAti«», Eq». (Ifil) mö (102)T is staE<Iar4.    THe nuaerical 

ccduiiqaf «»ally <lftpen4« ap«in tfee aethod choem for Che solutioo of the 

resulcing al«cbr«lc «qoatioB».    Hie aecbod wed hexe is to solve for 

H     and p    fn» the finite diffetence cqestioos.    This gi^es 

11 2 - h^B 

and 

2 -h2£ 
fiJ«) 

^ ^fcfc«*tlve netfaod for solving the equations is wed.   A first spprtx- 

iaatlon is ured to calculate a second «pproacLnation «hldi in turn is 

used to calculate « third, and so on.    Since the sane formula (Eqs. 

(103) end (104)) is used to calculate each approxinatioa, the iterative 

process is said to be stationery.    The fomulas used describe a point- 

getfaod since the next approximation at one point is explicitly expressed 

in terns of known values at other points.    The Iterative procedure is 

convergent «hen the differences between the exact solution and the 

iterative approximations tend to zero as the number of Iterations 

Increases.    The iterative process described below is called a Jacob! 

iterative method (Ref. 29).    Initial guesses are made for Hzi and p^^ 

across the entire plasma layer (x » 0 to x ■ d).    New values for H 

and p.  are  computed at each point using Eqs.   (103)  and (10A)  and the 
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iaitial g«essM far H      «cd pt.    H     «BO p   arr agtin coaputtti at catts 

potat anlag die a . and p   values fomd is tfce first i»ration.    Tbe 

pzvccAif« is rapaatad aatil die soJdCioa converges such that S     and p. 

sadafy Eq«. (101) and (102) at all points across the la^ar.    Mtoen this 

occvn, the U^. and pi ceapuced froa Eqs.  (103) and (104) vill be 

mchanted ftoa one iteration to the nest,   this vill never happen, of 

coszse, becassc of tfc* errors In a finite difference solution; however, 

coasergcaes will be asswed when the change in H . end p. between 

saceeaaise iterawlo«» oeooaws snail.    Ibe convergence of a typical H 

srltstion is illustrated is Fig.  7 as a fmction of the nmber of iter- 

ations,    the convergence of the p{ solution is such faster« as shown 

in tig, &,   k typicel value for h is d/50. 

Since the plasaa is bowded, the field solutions are constrained 

to obey certain conditioas at the boundaries (see the previoua section^ 

Boundary Conditiocs).    these are included la the ounerlcal solutions oy 

requiring that H . and p. obey these conditions.   One such condition 

is that H    (1*0) be held constant.    Ail other boundary conditione 

Involve Che derivative of the field quantities.    The derivatives at 

the boundaries are finite difference approximations obtained froa a 

Taylor series expansion of the function {Ref. 28) at the appropriate 

boundary.    For the derivative at the wall (x * 0) 

df 
dx 

-f2 + Af!  - 3f ^ A o 

x.0+ 2h 

where the number subscripts are the values of i.    For the far boundary 

(x- d) 
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Figure  7.    Sample Convergence of the H .  Solution 
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Figure 8.    Sample Convergence of the p.  Solution 



v* - ^, *  'v.. 

i>.e  derivativ*  values will i>*  u*ed to 4011«   for the   field qouitiCle* 

■st  tn« botndarie«.    Veiling 

;K5-* e'?ivln|i  for th* bcindarr «alu*« giw^ 

-Äi" f    ♦ if , <• 
r    .  H _  (jGS) 
o 3 

and 

fj, ^ —    . (106) 

The bomdmxy coodltioo« applied la the niaorieal solution and wed 

for either codel  (Fig.  5(a) or 5(J»))  «re exj-reased m follows: 

at x • 0:    H_ä • Zi zo 

*. at x • d:    -j— ■ Z-i 

S-^ 
where Z.  to Zt, ax« coaplex ntabers.    The value of H    at x « 0 is fixed. 

The values of the derivatives of the fmctioos at the botndarles are 

ised tc calculate the function values at the boundaries (except, of 
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coufM,  for the Tftloe of £    ot s * 5).    Equations  (10V)  aad (Ufef  are 

as*4 to aiiciclxt« ta« fuactlan Talue« »t tb*- bcaadcrlec as foiiows: 

-2h2;   - i», ♦ 4p, 

^- 

Caieg E^.  CU)*) «t « « d fives 

P»- 

aM'- - ^2 + ^-1 

■«a r  • 

lh« botadaty vaSacc «n up-datod in cbia nsancr at tis« end of «asfc 

iteratice aad ase uaed for calevlatioee in the csiccsediag iteratios, 

Coeffielama of tha Couplad Equatipna 

the cemphtz coefficients of tbe coupled wave «qoatl«» (61) and 

(62) dstexalne tbe fotaa of tbe solutiocs for R   or p.    The iceportasce 

of dae nagnltttdM of the coefficients is illostrated In the nexc sectioß. 

By uoxking «itb tbe coefficients for various plasma profiles and 

operating frequencies, one finds that certain coefficients are auch 

•ore inportant than others.    The coupling coefficient F is perhaps the 

aost slgnlficsBt coefficient,    ^hen the eyact fom cf tbe continuity 

equation (Eq.  (Iß)) is used, coefficient F is given by 

n    f.    d£ I     eK   dn 
f_o   1,. _^ U —^—H 
o   I?       J o 

r. -t!^\l..-£\ + ^L-J>.   . (io7) 

This coupling coefficient as given by Burman  (Ref.  16)  includes only 
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ti»*   lust  i*rs.     ffe«^ ösolvt* vittu«« <*i  tb* cmflicZml F flwen br i*. 

iU*7}  «a ?i«>r.i Vy   fturKBt  <lef.   :&>   «re pitied i« Fig.  9.     tt   Is 

cL«*-r%-«4 :i:«e ti»v r  iociudiftg tTit «drfi:.Lcftal mrs is i^rget. especially 

ft  t'f *^«il*r electreu deaslries.    $lac*t In the istianegcactK» reglso. 

üw ^mtsare l* esxmncinliy pr«fj-rtlno»! to f, ckc aafnicsde of F could 

a£ke « large ^Iftcrene» In Che prfe«Sttt« maflitvdt.    To* other ccuplieg 

ci»iti<ient i* piotttä in fit,  10.    Both ccvplini coefficients read* 

jt RisiäJie; v9iu»  tt the soae dlst«>ce into ttue ^iassa»    the peik iss the 

curve rarprrseatlcg coefficieac F ia ctmed by « si&l»iat in c    at a 

tk->lat whfere »    » w; i<e.k «a x value where the electtoo «feosit» a p   0 

Fesults ie e vsli* »f e 

-^ 

|tt e 

^P   J« 

2 
o" 

equal to the operating frsqwaccy.    Since n    is (»sttscä to be linearly 

increasing, the x dependence of F Is given by a./c  : therefore, tbe 

coupling coefficient is «ücectly proportional to the deuslty and 

inversely proportional to she relative dielectric cecstaett of the 

plasna given by 

u,2 ..2 

a^+v2 ^ (rt2+v 

for a lossy plasma and 

^ 

a.2 
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for « lossless plssas.    For a lossless clsesa c    • 0 for «    » . and F 

»oold hi. InflBitc; however» c    hts a adnism for »    ^ >  is « ios&v 
P n 

plssaa sod F has a peak value at the dlstsnce x where «    * --.    The 

peak will be less sharp for larger collision frequencies. 

The other coefficients are giwes in Appendix S fcr a trpical 

plasaa prcfile and operating frequency. 

ApproKiaate Soli tlcc 

In detendning an appnadaate solution, the relativ« mgnltudes 

df the terae In the equations arc considered.    If soae cesas In the 

equations at« ■uch saaller than other», these can be neglected «nd the 

equations slnpliiled.    the prccedure is dsscrlbed beioec 

(1) Beplaee a secoed deiivatlve ten by the dependent variable 

In die derivative divided by die square of the characteristic length 

(the plasaa tbickneas, d). 

(2) Replace a first derivative tern by the dependent variable 

la the derivative divided by the diaracterlstlc length. 

(3) tietemLoe the relative s^nltude of the resulting terss 

fron the coefficient aaguitcdea. 

For the two coupled differential equations the first two steps 

result in: 

[ — +   |   + B J Hz - Co (108) 

ÜrM +   7   + EJ p « FH (109) 
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fvr An electron density profile wblch increases linearly froa lO1"' 

eise irons/CBS    to lO5" clecCrons/ca3 in 2 OB, it is shovn in Appendix 

A that  for certain  frequencies  the above equations becc 

(^+^)B«"CP (1,0) 

Ep • raz (ni) 

and 

with the other tents being «uch ssaller.    Substituting for p in Eq. 

(110)  frca Eg.  (ill) gives 

(i-s)1 [
z-r*z • (n2) 

or 

(7* 3 -r)«.-0 • <u:» 

It is also shovn la Appendix A that CF/E is negligible co«pared to 

the other tens in the parenthesis in Eq.  (113).    Equations (108) and 

(109)  thus becoae 

fr^) 2 

and 

P ■(IK ■ 
Reiatroducing the derlvetiwe csfcftttaa, thece eqv&tions becasw 

d2H dH 
-^ + A -r-?' - 0 (114) 
d«2 ^ 
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(115) '(IK • 
This procedure appears siailar to a successive approximation technique; 

hovever, it shovld be noted that the coupling tens were neglected 

only when their Magnitude vas auch saaller than the other tenss in the 

equation.    In the H    equation the coupling ten was negligible; however. 

In the p equation,  the coupling ten was a doadnaot factor. 

Equacion (IM) can be solved for H .    The pressure p can then be 

found fro» Eq.  (IIS).    First define 

dB 

dien 

«-ar 

ig+ AG« 0 
at. 

* 

where 

i    de 

£    dx 
P 

Then 

dx - 0    . 

Integrating both sides of the above eqjiatloo gives 

in G « £n e    + In C    , 
P 

or 

G * Ci  e      , 
'    P 

or 
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dH 
^Z- - C-   • ax p 

where C:   is. the first constant of integration. 

Integrating both sides of the above equation gives 

s 

B    • C    i 
* J 

e    dx ■*• C-. 
P 

c 

wheri.- C    in tlie second constant of integration. 

Since H  (x«*» « K (0) 2 s 

d» + Hr(0) . (life) 

Using the rigidity bouadaxy condition at « ■ d, it is shoKS by Eq, 

(76)  that 

iii,, 

^d" 

 £ 
| -^^'oxV^ 

Using this condition gives 

K  K (0) 
C, .  25^^  (117) 

j - K  ( E (x) dx 4   ox ' p 

where c  (x) is the relative permittivity  (complex) of the plas©a evalu- 

ated at x, and K      is given by Eq.   (75). 

The approximate H    solution Is not always accurate for the plasmas 

of interest; however, the approximate p solution can be used for all 

profiles, since coefficient E is very large (see Appendix B).    The 
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approximate solutions are coapared with metrical solutions in fig». 

11 «cd 12.    In cost caees, the initial guesses  frr a niiaeric.il solu- 

tioo were the approxiaate solutions described above. 

Soli^lons of die Coupled Wave Equations 

The ■eanlog of the H    and p solutions will be discussed before 

die results arc presested.    The field solutions are valid solutions 

of the coupled «ave equations; however, the curve« describing tbe 

pressure field as a fmctioo of x. show only a part of the solution. 

If the coaling ten on the right-hind side of E$. (^1) is neglected, 

the pressure field solution has two parts.    One part consists of the 

mtfaeaatical representatioo of two plane waves traveling in opposite 

directions (attenuated by the sane aaouat as a function of x) and 

täe other part consists of a pressure amplitude with a differeur x- 

depeodencs.    It will be shown that the results presented in this 

chapter give only the second part of the pressure solution. 

As discussed in the section on the approxioate solution, the 

coupling (or influence) of the term on the right-hand side of Eq.  (61) 

is negligible for »any of the profiles «id frequencies of Interest. 

The conplete analytical solution for p will be obtained by making some 

rather broad assuaptions, hence the error in neglecting the coupling 

cezm in Eq.  (61) will not present serious problems.    Toe equations to 

be considered are: 

d2H dH 
Z + A ^j- + BH2 = 0 (118) 

dx2 

and 
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um 

w*.^re g - FH  .     The safc«cic field H    can be detci*incd ftcm tlic   fint 

equation.    Th« second eqoacloa 1« now couidexed It» dtCsll.    This is 

an iahoacgeaaous, secaed erdcr, otdtnarr diffenatl«! •qusr.lco.    The 

solutioo will crasist of two parts:    the boaogecrous solatlnn aid the 

particular solutioo.    If D sod E are coDstanrs (whitfa is not a bad 

ass'-scptioQ for a linearly inctcasiat •lectroo density profile), the 

bomfeoeout solution is 

ph - ae »   ♦ be '      , (120) 

where «    and Y    are the two toot* of the equation s2 + Us + E * 0 and 
I 2 

a and b ate constants.    Slmra E » D( y   » j/E and y   2 -$&.    This 

is due Ko the laxge collision frsqumcy in the plaaas (see Eq. (97). 

The particular solution is calculated as follows: 

„   - f «(g) las^V^' - aeY>'beY28J   .. pp " j 'w ^     5?s5    ^   * (121) 

where U(B) cat be detemloed by calculating th« Wronskian 

W(x) 
IPjCx)      p2(K)| (y 4y ), 
I - «b(Y    - y )e    '    * 
!P;(X)    p;(x)|      V 2     l/ 

. ab^ - YiJ 

where 

Y x 
PjCx) ■ ae 1 
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p,<«) »be * 

Kot« that six.« -?, • "• tjt 

« «1 

and the Vrmmklm is ladspMniBnt of s.    The }>articular solctloa is 

dMB foacul to be 

•     • I 

«bsi« It was asctacd that the produce fB   • g was canstsnt, allowing 

the IntagraM**! of Eq. (121) to be perfoned easily.    Ihe coaplete 

solntion is just the sun of the hoaogeneous solution end the partic- 

ular solution 

Y,a Y,«     .      _   / Y,x       Y2«\ 

which can be rewritten 

Yj«        ^ Yj« g P - A'e       + B*e       + */E    , (122) 

where YJYJ * E, and A* - a - g/2E and B* ■> b - g/'2E are defined as the 

n*» constants of the honogeneous solution (since g and E were considered 

Co be constant).    The constants A* and B* can be deterained from the 

two boundary cenditions and are found to be  functions of both M    and 

dH /dx at both boundaries.    The particular solution has no undetemined 
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coefficient« but depends os» the "forcing fimci.i&a" $.    The particular 

»olvtloR aiso is a f«setlor. of H    slsce g « FH . 

The ounerical solution yields pressure solutions with approxi- 

•ately the foilobiig dependence 

P •(!)«,-§/£    . (123) 

and this is junt Che first part of Che particular soluticn.    In the 

solution, the other texas «yst be nagllgible since the k dry»,dsttce 

is given by g/E alone sod the coaplete solution is given by the s« of 

the tens.    It is concluded Chat the "forced solution" (a ten in the 

particular solution) is ■uch larger th«i the tans in Che solutioc 

characterizing the acoustic wave propagation in the plasaa. 

It was noted that changing die acoustic boundary conditioos 

(e.g., setting p • 0 at a - d) had vry little effect on die solucion 

at interior points.    Ibis should be expected since the particular 

solution is not affected by changing the constants A* and B* which 

depend on the boundary conditions. 

Even though the two plaaaa nodels considered are siaple, there 

are still eight different paraMtcrs which can be changed to affect 

Che solutions.    These include:    Che electron density at the wall, 

the peak electron density, the teaperature at the wall, the teapera- 

ture at the distance corresponding to the peak electron density, the 

collision frequency, the distance to the peak, the operating frequency, 

and the angle of Incidence.    For the results presented In Figs.  13 to 

22, the angle of incidence was fixed at 30*. 
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In Fig«.  13 to 18 Ch« profile  :f Fig.  3(a)  is ««e^-    tlu. vdll md 

peak electron Geocities, the wall and peak teftperatures, asd :He 

colllaioo frequeocy arc indicated on each figure.    Solatico» corres- 

poodiiig to different operating frequencies are labelled with ehe 

particular frequency.    The aagnetlc field solution ic< the first desfiitr 

profile is given in Fig. 14 for three different operating frequencies. 

Since the acouctlr nodes generated in the plasaa are of prinary concern, 

this is the only aagnetic fie^d solution presented.    Figure 15 gives 

die pressure field for the sane well and peak electron densities as 

Fig. 13; however, the distance to the peek in Fig.  15 is only 0.5 tm 

m coapared to 1.0 an in Fig. 13.    This iaplles that ehe gradient of 

die electron density in Fig. 15 is larger than that in Fig. 13.    Fig- 

ure 16 gives pressure solutions for a low electron density at the wall 

(1018 ca'3), while Figs. 17 and 18 give pressure solutions for a high 

peak electron density ilOlk ca~3).    As given by Eq.  (123), the x- 

dependence of p is Just FB /E.    Since E is alaost constant across the 

plasaa layer (see Appendix B) and H    is slowly varying with no pro- 

nouDced peaks, the peaks in die curves representing the pressure solu- 

Cioos are due to F.    This peck in F ccn be seen in Fig. 9.    The peak oc- 

curs ct the distance where the electron plasaa frequency (deterained by 

the electron density) Is equal to the operating frequency.    The magni- 

tudes of the precsure solutions for the different density profiles are 

not significantly different; however» comparing the 30 GHz curve in Fig. 

13 to the 30 GHs curve in Fig. 15, it is noted that the pressure magni- 

tude for the larger electron density case (Fig.  15) is slightly larger. 

The significant result of the pressure solutions given in Figs.  13 to 
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18,  as statuü earlier,  is  that the curve clearly describes  a variation 

given bv Eq,   (123) with no x-variat'on of the type given by the two 

exponential  tetma in £q.   (122)  observable.    The influence of these 

terns (describing acoustic wave propagation) on the "forced solution," 

Eq.   (123), must be negligible.    From Figs.  13 to 18, it Is observed 

that  the amplitudes of these  terms must be of the order of 10"8 rewtons/ 

meter''  or smaller.    The amplitudes of these terms are discussed 

further in Chapter V. 

In Fig.  19, the pressure field solutions are given for various 

temperature profiles  for a lü11  - 1013 cm-3 electron density profile. 

The pressure increases as the plasma temperature Is Increased. 

In Fig. 20 the profile of Fig. 5(b) is used.    Comparing the 30 

GHz curve in Figs.  13 and 20, it is noted that the pressure amplitude 

for profile (b) is smaller than Che amplitude for profile (a).    This is 

due to the fact that H   Is smaller for (b).    The same x-dependence 

(FH /£) is present for the pressure solutions in both profiles.    The 

same explanation holds for Fig.  21. 

The attenuation of a pressure wave propagating In the positive 

x direction from x • d in the homogeneous region of profile (b) was 

calculated by determining the real part of the x component of the 

propagation constant given by Eq.   (130).    The pressure amplitude was 

normalized at x - d and the attenuation is described by 

.    -a(x-d) 
i  ildT 

where a  is the attenuation factor from Eq. (130). The wave is attenu- 

ated by a factor of 10"1* within a distance of only 0.02 mm from the 
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peak  (see Fig.  22).    The calculations were made at  low frequencies 

(1 GHz and 10 GHz) where the attenuation is  less severe.    Higher 

operating frequencies would result in an even more rapid damping of 

the wave. 
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CHAPTER V 

CONVERSION EFFICIENCIES AT A DIELECTRIC-PLASMA  INTERFACE 

Conversion of an Electroaagnetlc Wave Into an Acoustic Wave 

It has been shown that the amplitudes of waves associated with the 

propagating electron acoustic mode are of the order of i0~" newtons/ 

meter'  or smaller even In a plasma region where there exists coupling 

between  the electromagnetic wave and the acoustic wave.    An estimate 

of the wave amplitudes is made in the section Power Conversion at the 

end of this  chapter.    Even though it appears  that the amplitude of the 

reflected acoustic wave is so small as  to be undetectable,  the conver- 

sion efficiencies will be Investigated, since very few numerical 

results seem to be available even for the semi-infinite plasma case 

of this chapter.    For the seml-lnflnlte plasma, the pressure solution 

simply consists of one of the exponential terms in the homogeneous 

solution of Chapter IV which corresponds to propagation in the posi- 

tive x direction. 

An electron acoustic wave can be generated at the boundary between 

a dielectric material and a plasma by an electromagnetic wave which Is 

vertically polarized and obliquely Incident from the dielectric mate- 

rial (Ref.  21).    It was shown in Chapter III  that a vertically polar- 

ized electromagnetic wave incident on an Inhomogeneous plasma generates 

a disturbance described by two differential equations implying a 

coupling between an olectromagnetic mode and a plasma mode because of 

the inhomogene!ty of the medium.    The modes are also coupled at a 

boundary, but the coupling in this case is  through  the boundary 

84 
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conditions which are both electromagnetic and acoustic.    The bomdary 

conditions used axe the Continuity of the tangential components of the 

electric and magnetic fields (Ref.  30) and the vanishing of the normal 

component of the electron velocity (Refs.  12, 13, and 22). 

H ((T) - H (0+) (124) z z 

£ (0') - £ (0+) (125) 
y y 

V    - 0 (126) 

The acoustic Uomdaxy condition, Eq.  (126), Implies  that none of the 

electrons penetrates the boundary and is sometimes called the "rigidity 

boundary condition."    This acoustic boundary condition is considered 

to be valid at a dielectric plasma interface (Refs.  12, 13, 21, and 

31); however, at the boundary between a metal and a plasma, a different 

acoustic bowdary condition must be used (Ref,  31} which specifies the 

ratio of the normal component of the electron velocity to the pressure 

and is referred to as the "Impedance boundary condition." 

In  this chapter, only homogeneous plasmas are considered so that 

the spatial dependence of the fields can be explicitly written.    Plane 

wave propagation is considered with harmonic time variation assumed. 

The objective is to determine nunerically the effects of plasma param- 

eters  (electron density,  temperature, and collision frequency)  and the 

incident electromagnetic wave (frequency and angle of incidence)  upon 

the conversion efficiencies at the boundary. 

The conversion of an electromagnetic wave into a pressure wave at 

a dielectric-plasma half-space interface is shown in Fig.  23.    The 

electromagnetic wave is vertically polarized and Incident at some 
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angle 6,.    Part of the wav* Is traaamltted Into the plasma and part is 

reflected at the Interface.    Due to the coupling at the boundary, part 

of the electromagnetic wave is  converted into an acoustic wave in the 

plasma.    This wave is represented by the scalar pressure p and propa- 

gates at some angle 6    away from the boundary.    Since  the plasma is 

homogeneous, Eqs.  (61) and (62) become 

d2H 

and 

where 

and 

dx 2 hx    z 

dx^ ** 
vr.. P "0 

'hx 
K2 - K2e 
y        op 

(127) 

(128) 

(129) 

ü2   I 

*X        y      u2   [       a.2 " 
(130) 

Both y,     and y      are complex c aabers.    This implies that both  types of 

waves are attenuated in the plasma.    Equations  (127) and (128)  describe 

wave propagation in the plasma.    The electromagnetic and acoustic modes 

propagate independently.    Since the plasma is of infinite extent, there 

are only outgoing waves and from Eqs.   (127)  and (128)  the fields in 

the plasma are given by 

and 

-Yhxx    jKvy 

H    - H      e e    y 

z        zo 

p - p(0) e 
-Y    x      jK y 

px   e 
J y 

(131) 

(132) 
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where the y dependence  Is  the same as that  for Eqs.   (52)  and (53). 

The value of the pressure wave at the boundary 1B p(0)  and H      is the 

value of the transmitted magnetic field at the boundary. 

The electromagnetic  field in the dielectric is taken to be a 

superposition of an incident plane wave and a reflected plane wave 

and is expressed in terms of the magnetic  field as 

/  "Ydxx Ydxx\   JKvy 

H2 * Ho r      + Re    /e (133) 

where H    is  the amplitude of the incident wave and R is defined as the 

reflection coefficient.    The x component of the propagation constant 

in the dielectric is defined as y,    and is given by 

y2.    - K2  - w2u e    K. (134) 'dx        y o o    d 

• 

or 

v.    «  Wp E K.  cos 6,   . (135) dx      J      o o d 1 

The ratio p(0)/H   will be determined using the three boundary 

conditions, Eqs.   (124),  (125), and (126). 

From Eq.   (124)   (H    continuous at the boundary x = 0), z 

H    + H R - H . (136) 
o        o zo 

From Eq. (125) (E continuous at the boundary x = 0), and using 

E = -i/jiüG.fdH /dxj in the dielectric along with Eq. (133) and using 

Eq.   (48)   for E    in the plasma along with Eqs.   (131)  and (132), 

o  dx   ' ' k" 
ju>cd 

fl ~ R! - -^ H      + —f- p(0)     . (137) L J      juie    zo      cjcAm ' 
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From Eq.   (126)   (V    - 0 at the boundary x = 0), and using Eq.   (49) 

forVx 

eK Y    E 
_i_ H      + -Ei-2 p(0) » 0    . (138) 

o 

Equations  (136),  (137),  and (138)  can be used to solve for the 

ratio p(0)/U  , which gives the magnitude of the generated pressure 

wave at the boundary relative to the amplitude ox  the Incident electro- 

magnetic wave.    The result is 

&)  V-d/^j  
o e^Kr      Y    Yj„e e        Y    Yv ^ y      'px dx o p      'px hx o 

* uAm n K. n o d o 

Equütim (139) will be used to investigate tne conversion of a trans- 

verse electromagnetic wave into a pressure wave at a plane dielectric- 

plasms Interface.    A computer program was written to solve Eq,   (139) 

for various plasma parameters and incident electromagnetic wave 

properties.    The absolute value of Eq.   (139)  is used.    For simplicity, 

this value will be designated as   |p/H|  in the  following graphs. 

The electromagnetic-to-acoustic conversion efficiency is plotted 

as a function of electron density in Fig. 24. The temperature and 

collision frequency will vary for different electron densities. Col- 

lision frequencies and temperatures for different electron densities 

are shown in Table I. These values were taken from case studies made 

of the plasma sheath surrounding a hypersonic reentry vehicle using a 

computer code developed by McDonnell Douglas Corporation  (Ref.   32), 
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Figure 24.    Electromaguetic-to-Acoustic Conversion 
Efficiency versus Electron Density 
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Table  I 

COLLISION FREQUENCIES AND TEHPfcF^TURES 

FOR GIVEN ELECTRON DESSXTIES  (Ref.   32) 

Elect 
densi 

(OB 

tron 
Lty 
■ ) 

ion 

Collisloo 
frequency 
(sec" ) 

10" 

Temperature 
no 

1.6 x 2000 

3.2 x to'-J 1011 200C 

6.4 x 10" 10" 2000 

1.3 x 1012 lO11 3000 

2.6 x 10^ 1011 3000 

5.1 x 1012 1011 3000 

1.0 x 10^ 10" 4000 

2.0 x 10^ 2 x 10" 4000 

4.1 x ID13 2 x 10" 4000 

8.2 x 1013 4 x 10" 4000 

The program treats the inviucid flow field, ablation mass less, and 

turbulent boundary layer surrounding a spherically blunted conical 

body.    Ths electron density, temperature, and collision frequency in 

the turbulent boundary layer are of primary concern in this report. 

The case studies were made by the Fuzing Environment Branch  (WLEE)  of 

the Air Force Weapons Laboratory using the computer code for several 

advanced reentry vehicles with two different types of heatshield 

materials and various reentry trajectories.    The significant result 

of Fig.  24 is that the electromagnetic-to-acoustic conversion effi- 

ciency increases monoton!cally, with increasing electron density. 
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this taplfes thmt * motm dem* plmmm wovia molt Is a better cmplimg 

«sf electrcn^pctlc «&*■*$$ to «eoMtie mmrgy «c tbe bomümty.    UM 

imttzd portloa of &» 40 C«s cwrai im fig. 24 iodicoCM the mgim 

«feere th« »eoaktlc v««m «ic f ö» damped siso* I « A. fa this region. 

Pigun 25 flwe dM oloetsaMitMeic-to-Aooaitic onvetsiao «ffl- 

cieocy es « fueccioa of the plena tnperetarc.    It is noted that die 

ccnversioa efficiency incseases en tiie plmmm tsapcrntnie is incmaeed. 

mis is to be napncted since it is tftt« plmm* ceqperetuie opt« vfaidi 

die ee»«Btie wevns depend as e propege^eg node (see Eq. (33)).   Ihe 

munericel solttcioss show that the "forced solvUen** of the pznsstt» 

field else iocnasee with locieaslag tenpemtiirt es Illustrated in 

Hg. 19. 

Figores 281 27, sad 28 iiluserste the fact that the slectzw^netic 

to accuscic oonvenlon effidenof has a aaxlmn value at a particular 

eagle of incidence.   For en electroa d«isity of 1013 en-3 and a 

frequmcf of 40 GHz the effitiLcaqr has a peak at approainataly 25* 

(Fig. 26).    For a frequency of 31.25 GBZ the p»afc still occurs st 25* 

(Fig. 27); hovevsr, the efficiency nagnitude is larger If an order of 

nagoitude due to the frequency dependence of the efficiency (see Figs, 

29 and 30).    «hen the electron density is increased to l?yit ce"3, the 

peak occurs at 45* (Fig. 28). 

Figures 29 «id 30 illustrate the frequency dependence of the 

electronagnetlc-to-acoustic couversioo efficiency.    Ihe efficiency is 

plotted as a function of Che diaenalonless psra»eter u/u , where m 

is the electron plasma frequency detemlned by the electron density 
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Figure 26.    Electromagnetic-to-Acoustic Conversion Efficiency 
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Figure 27.    Electromagnetic-to-Acoustlc Conversion Efficiency 
versus Angle of Incidence (f « 31.25 GHz) 
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ftm Eq.  (30).    Ike curves exhibit a mlninus at a frequency slightly 

äbam Öie plasas frequoacy and a steady decrease at frequencies greater 

than about twice die plasva frequency.    The physical explmatloo for 

this behavior lies in the Interpretation of the electron plasu fre- 

quency.    At frequencies below the plasma frequency, the electron» can 

respond to the time variation of the electromagnetic wave and at fre- 

quencies above the plasaa frequencies the electrons cannot follow the 

field.    Since the pressure wave describes a collective notion of the 

electrons, a larger response is expected at frequencies below the 

plssaa frequencies.    From Eq.  (139) it is seen that the efficiency is 

directly proportional to the relative dielectric constant of the plasma, 

e .    For a colllslonless plasma, e    is zero for u ■ w   and the effi- 
P P P 

dency would be sero.    For a plasma with a large collision frequency 

such as the one considered here, e   has a minimum for at « u   and does 
P P 

not vanish. The dashed portion of the curve in Fig. 29 indicates that 

Landau damping would destroy any collective motion of the electrons in 

this frequency range. The efficiency Is an order of magnitude smaller 

for an electron density of 1012 cm"3 (Fig. 29) as compared to an elec- 

tron density of 10lk or3 (Fig. 30). 

The electromagnetic-to-acoustic conversion efficiency is plotted 

as a function of the dimenslonless parameter v/u In Fig.  31.    The 

effect of a large collision frequency is to reduce the amplitude of 

any organized motion of the electrons considered as a continuum.    The 

effect on the conversion efficiency Is therefore a reduction in magni- 

tude of the conversion efficiency.    The reduction is  fairly small and 

constant  for collision frequencies smaller than the operating  (radian) 
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frequency (Flg. 31); hoiiawr, the reduction In the efficiency nagni- 

tude Is greater for collision frequencies larger titsu the operating 

(radian) frequency ss illustrated In Fig. 31. 

Conversion of an Acoustic Wave into an Elcctrowagnetlc Wave 

An electron acoustic wave Incident upon a boundary betveen a 

plassa and a dielectric can excite an electromagnetic wave In tise 

dielectric.    This Is a consequence of the boundary conditions being 

both electroMgnetlc and acoustic in nature« Eqs. (124) to (126).   The 

conversion process Is Illustrated In Fig. 32.    In general, there will 

be both transmitted and reflected electromagnetic waves excited at the 

boundary.   As shown In Chapter III, a pressure wave such as the one 

shown In Fig. 24 can be excited only by a vertically polarized electro* 

magnetic wave, therefore, a pressure wave of this type will excite 

only a vertically polarised electromagnetic wave. 

The plasma is considered homogeneous so that expressions for 

the fields can be written explicitly.    There is one other assumption 

which must be made in order to obtain nvmerical results.    The y depend- 

ence of all field quantities (including the incident pressure wave) is 

assuaed to be 

JR y 
e   y (140) 

where K is given by 
y 

K - w/p e K. sin Gi . (141) 
y     o o d 
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Figure 32.    Conversion of an Acoustic Wave Into an Electromagnetic Wavs 
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The value of K   will decemine Che angle -3    at which the pressure wave 

Is incident upon the boundary» since K     can be determined fro« v 

(K     is the inaginary part of y    ) and 

•W P 

The spatial vaiiatious of the field quantities are detenained in 

the sane manner as in the last section.    The electromagnetic wave 

reflected in the positive x direction is described by the magnetic 

field strength in the plasma 

H    « H     e    njt    e    y      , 
z       zr * 

where H     is the amplitude of the reflected magnetic field strength 

at x ■ 0 and y.     la dsflned by £q.  (129).    H has only a z conpcnent, H , 

for a verticrJLly polarized electromagnetic plane wave.   The pressure 

wave in the plasm« is given by 

Y^x -Y_xN   JKyy 
(p1 .

Y"   + Pr e-V), 

where p. is the amplitude of the incident pressure wave at x » 0 and 

p   i" the amplitude of the reflected pressure wave at x » 0 anJ y r px 

is defined by £q.  (130).    The transmitted electromagnetic wave in the 

dielectric is described by 

Ydxx    jV H    - H      e ax    «    y       , z        zt ' 
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where K      is the aeplitude of the  rransBict«d B«gQ«tic field strength 

at K - 0  and Y^ is  defined by Eq,   (135), 

Appiving the bomdary coodicitm fro« Eq.  (124) gives 

Hrt-Htr    . (142) 

Apr Ivine the boundary conditioa fro« Eq.  (125) gives 

1 eK 

i-. dx H
2t " - J^ ('\x B«) + ^Ai (pi + Pr)    * (143) 

Had  coKpletes the two electromagnetic boundary conditions. 

>.pplyia% the acoustic boundary conditlcMi fro« Eq.   (126) gives 

eK £ 
—?- H       - -r-2- ly      P-   - Y       p \ • 0     , (144) 

where Eq.   (-i9) has been used for V . 

Equations  (142). (143). and (144) can be t   .ved for Che ratio 

H    /p   which gives  the ratio of the aeplitude of the electromagnetic 

field excited in the dielectric to the amplitude of the incident 

pressure wave.    The result ih 

^Vp,   1eK
y[

Yhji     KdJ 

(145) 

Equation (145) will be ^«d to calculate the conversion of a 

pressure wave Into an electromagnetic wave at a plane dielectric- 

plasma interface  for varying plasma parameters      A computer program 
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written to solve Eq.  (145).    Hie absolute value of the ratio in 

Eq.  (145) is used.    This value vill be designated as  iH/p|  in the 

following figures. 

The acoustic-to-eiectronagnetic conversion eftldency is plotted 

as a function of electron density  for an operating  frequency of 2 GHz 

in Fig.  33 aid for 40 GHz in fig. 34.    The collision frequencies and 

teaperature« corresponding to the electron densities at which the 

efficiency was conputed are given in Table I.    The conversic- effi- 

ciency is larger for lower electron densities.    This Is desirable, 

since the cocverslon process (fron a pressure wave Into an electro- 

■agnetic wave) will occur at the dielectric-plasaa interface where 

the electron density in tl)e boundary layer plasaa will be lower than 

anywhere else in the layer.    For the operating frequency of Fig.  33, 

2 GHz, the electron «tensity which would result in a plasaa frequency 

equal to Üu» operating frequency is 5 x 1010 electrons/cm3.    For Fig. 

34 the operating frequency is 40 GHz and the electron density yielding 

a plasaa frequency equal to the operating frequency is 2 x ID13 elec- 

trons/cm".    In both Figs. 33 and 34 the conversion efficiency decreases 

for electron densities larger than that electron density which deter- 

mines a plasma frequency equal to the operating frequency. 

The acoustic-to-electromagnetic conversion efficiency is plotted 

as a function of plasma temperature in Fig.   35.    The conversion effi- 

ciency (the ratio  j   zt/pJ)  is independent of the temperature.    Even 

though the ratio is  constant  for varying  temperatures, p. will be 

smaller for lower temperatures; hence,  the effect will be a reduction 

in the transmitted magnetic field at lower temperatures. 
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The acoustic-to-electrmagnetic conversion efficiency  is plotted 

as a ftnctlon of the diaensionless paraoeter c/^    in Figr.  36,  17, and 

38 for three different electron dans!ties:     10'?  cm"1,  tO1i cm'^, and 

lO1"4 cm"3.    There Is a maxinua in the conversion efficiency at a fre- 

quency slightly above the plasna frequency and the efficiency decreases 

continuously at higher and lower frequencies.     It is more difficult to 

explain the trends of the frequency dependence of the acoustic-to- 

electroaagnetic conversion efficiency by physical reasoning than to 

explain the frequency dependence of the electromagnetic-to-acoustic 

conversion efficiency.    In the latter case,  the electromagnetic wave 

actually interacts with the plasma in order to excite organized, 

longitudinal oscillations of the electron gas as a mediun.    However, in 

Ute case of au acoustic wave exciting a transverse electromagnetic 

wave across a dielectric-plasma boundary, the interaction is more 

difficult to visualize since the organized oscillations do not exist 

in the dielectric.    Since the conversion of a pressure wave into an 

electromagnetic wave at a dielectric-plasma interface is the reverse 

process of the conversion of an electromagnetic wave into a pressure 

wave at the interface, it would be reasonable  to expect the frequency 

dependencies of the conversion efficiencies  to be roughly inverse. 

This is true at frequencies below the plasma frequencies where electro- 

magnetlc-to-acoustic conversion efficiencies increase and acoustic-to- 

electromagnetic conversion efficiencies  decrease.    Also,  the electro- 

magnetic-to-acoustic conversion efficiencies have a minimum  for w 2 ^   , 

whereas  the acoustic-to-electromagnetic conversiou efficiencies have 
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a oaxlnun for w =* « .    A significant result is  Che  fact that both con- 
P 

version efficiencies decrease for higher freiuencies. 

The acoustic-to-electromagnetic conversion efficiency is plotted 

as a function of the dimensionless parameter v/w in Fig.  39.    The 

effect of the collision  frequency on the efficiency is  to reduce  the 

aagnitude of the efficiency.    From Eq.   (145), if v -► «»  the conversion 

efficiency would be zero (note A » Jw ■«- v in Eq.   (145)).    me effect 

of the collision frequency upon the acoustic-to-electromaenctic con- 

version efficiency la even »ore severe than upon the eleetrmut^netic- 

to-acoustic conversion efficiency (Fig.  31).    The effect of the colli- 

sion frequency upon the acoustic-to-elecf.omagnetlc conversion effi- 

ciency begins for collision frequencies well below the operating 

frequency. 

Power Conversion 

It was shown in Chaptfer IV that the amplitudes of any traveling 

wave pressure solution (or superposition of traveling waves) of the 

coupled wave equations were negligible compared to the "forced solu- 

tion," which is dependent mainly upon the coupling term on the right- 

hand side of Eq.   (62).    It is  these traveling  (or propagating) pressure 

waves with wavelengths of the order of magnitude of one  thousandth of 

a millimeter which are required to obtain the resolution needed in  the 

very short  (1 mm)  distance from the wall to the peak electron density. 

It is  these waves  for which the conversion efficiencies have been 

calculated in the last two sections.    Even though it has been shown 

that the amplitudes of these waves are negligible  compared to the 
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"forced evlutim," It is still desirable to obtain see*- «vtimate of 

the order of magnitude of the amplitudes of thmt- waws^    It w;ll SM? 

shown that the amplitudes arc functions of the magnetic field screngtii; 

however, the anipllcudes are still seail and the vaves are seveteiy 

damped. 

Using the same assumption about the equation coefficients and 

g Cg » FH ). I.e., that they are all constant»» aa in the section 

Solutions of the Coupled Wave Eguatlgns in Chapter IV, Che complete 

solution for p ig then given by 

p - A» e        + B' e       + g/£ (146) 

where 

Y    » a + jß « j»€ 

and 

Y2 « -a - j& • -i*E 3 

(at is the attenuation constant and 3 is  the propagation constant)  and 

A'  and B'  are determined from boundary conditions.    The amplitude of 

the pressure wave traveling in the positive x direction is B*  and the 

amplitude of the reflected pressure wave  (the wave traveling in the 

negative x direction) is A'. 

The complex amplitudes A*   and B' will be  calculated using  the 

two acoustic boundary conditions  from Eqs.   (88)  and (90)   for a plasma 

model  like  that pictured in Fig.   5(b),     It is believed  that  this model 
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frat fit (17) and »*wd*g n «Id*" s'1. fcj«. (U?) and (148) becaw 

A* > »'  %  5 x ID"* 

'AfS 2.5 x lO'11    . 

«not I A'! '- 5 » Jö^, 

TlttrafOK«, for tbim pmiil«, fbe MpUtude of the pxcaanre wane pzopa- 

«ttiof m»9f fron dm SNit«dsxy 1« % x ]0*s »avtons/s2 at die bowdaxy. 

TM» val»» I» Ixiier than the "forced solationo" at the bcuodary; 

however, the propagafcicn constant ccntalas an attenuation factor tdiidi 

causes this wane to be danped out very rapidly In exactly the same 

■aener as for a horogeaeous plasna (Flg. 22).    The value of & is nore 

likely to be lO5»"1 rather than lO^n"1, in which case  JA'i? 0 a0«1 

the wave could be dapped out in about one hundredth of a millimeter. 

For a = lO1* m-1,  the amplitude of the pressure wave traveling in the 

negative x direction is 2.5 x lO"11 newtons/m2  (at x « 0).    It is  this 

amplitude which would be used in calculating the conversion from a 
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am not ahewft in a^f cf tisr Üjgmm iUwtxatia« ptcts«» solifedaaa 

IFli». U to U «* fl«s. 20 «ad 21), «haxa ooiy die "forcad «olotig«»'* 

are plotted. 

Hw {MMcr ia « «lacttWBagaetlc «««• cawltad 1» tSie dttelecttlc 

by a preaaut« «awe ineideat fro« tfee plaeaa «111 no» be calculated. 

The Fojrutlag «ector «m bo calculated at ihm boxtdaiy and the closed 

surface shohm In Fig. A0 «111 be osed to detendne the pooar radiated 

An the fielte tHO-di««HiioAal geoBetxy.    The «Idth (dx) of tiic volune 

«ill be cooaidered to abroach zero.    The surface area of the volune 

in the y-z plane is S aetex2. 

From Poynting's theorea the tloe-averaged power is 

URe{£t x H*|. dj (149) P - 

Closed surface 

where ds ■ -i dyd* with i representing the unit vector in the x direc- 

tion and the asterisk implies a complex conjugate operation.    Figure 32 
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Figure 40. Dielectric Volume Used in the Calculation of 
the Power in an Electromagnetic Wave Excited 

by an Incident Plasma Wave 
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illmt:*t*s am iutiätnt pnmmurt v«w j*i «ftc cxclcc^ «IsctrcJM^ueUc 

wv«, 8 , in «1w dielectric. 

Far a vertier'J? polarized «icctitauvsetic vam, Am eJUteCdc 

ficiJ Us die duel- ctrlc, l#, b« ecapwetts C   and E   aad 1 has 4«ly 

a z ejapmmt K,.    Tor kfea y Jepeafeece. of Iq. (140) t 

where £ . £ , «ad 8   ax* fuBctioas of a only ainoe the e   '    tcia «ill 

cancel la the operatloa.    Substitueiag Eq. (ISO) lafco fiq. (14d) gUaa 

S 

* 
since E   «id H   axe ftmctioos of x ooly. 

y « 

P-|iuJ-EyH*ls     (watts)    . (151) 

The electric field» E , in ehe dielectric is given by 

-      3H 

or 

v zt dx _ ds E     ■ ;  e 
y        i^A 

where H     Is the aasplltude of the excited magnetic field strength at 

x - 0.    Using Eq.   (135)  for YJ^ and evaluating E    at x ■ 0" (just 

Inside the dielectric) gives 

E    - -H      n,, cos 6,     , (152) y zt    c 1 

I 



at 
KAfefV 

P - | 5e fg^ »sd cos SjS*! «    ♦ C153) 

Sitt« M_tH t U i?»« 4,*J   «IH* 1« a «»1 ^uwcity» dt« clia«-««er«i«d 

pcMeir is 

fix« «Q, (145) tk« ratlc '.'^j fifj    cm b« dotczttle«d.   IhU mtio 

will be xcpt&smmA by C2: 

c-;E„ia/i?1i
2 . 

Then F can be expressed as 

P • | nd cce e,C2 S bjl        (watts)    . (154) 

Using Eq. (154), the power in an electromagnetic wave excited by 

an incident pressure wave will be calculated for the following param- 

eters! 

(1) Angle of incidence 30° 

(2) Operating frequency 30 GHz 
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(*) S (1 i»?> $.3 » W-4 •eter* 

i*l PUm« dn»lC7 ftofiU (fe) 10i: - W1'" or3 

(6> PlaWM tmtmtmtvm pnfliM 0») 28QO-30MI*! 

'7) Cctllsl4« fx«4«ea<7 ö « 10l! MC*1 

{5)   BUtflBC* to Äe ?«* «lecera» 
dMsity i M 

to stated at the beciaslst of tfels •ccticc» tb« sypropciat« flaplitude 

to be ar«4 4» ootwtlc-tcHiloctjuMngMitic ^anetnl^a calcttlatiau 1« 

A*f läM aapUtudt of tfe* pxoMicnt «•«• trawliog ia tbe B^«tS«t x 

dlatftlaB «t » • 0.   For the ponvetots given «baeo, the eetlattte for 

1* fives by Eq. <i48) «rw fowl to he 2.5 x 10'*> aeirtSM^.   Hica, 

jp.j • 2.3 % Iff"11 umtcemfm1,   Ute eeoeetjc-tocmlect»« H—ttc can- 

vexstioii effldesar, C   lo Eq. (154), CM be estUuited f«a Figs* 33 

mi 34.   Ia Flf. 33t C ie 2.5 for e fttvmaef of 2 «a« ead its rig. 34, 

C is l.S tot a frequmc? of 40 Gis, i^ex» in («leclxoe draeitjr of 3dil 

CB-3 wa» (ie«4 to detendne C.   for «n operc^lng Ksmveacf of 30 C8r 

C «ill be «oMMhese bstsrecn l.S aa4 2.5, so let C be equal Ce 2 a« 

aa approxlaatlco.   All of the factor» in Eq. (154) have been deter* 

mined and the tins-averaged ateedy-state power can be calculated aa 

follcws: 

P - (0,5)(202)(0.866)(2)  (6.3 z XO'^iZ.S x lO"11) 

which gives 

P - 1.4 x 10"22     watts    . 
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■Äl» im »\ mtttmmlf «aall fwwrr lewi aad It vottld be «ttjr li«rd to 

«Lscl^ttfjit b«tiiMn thi» «Igacl ao^ tockgroaid noise due to spectral 

•nissiän to the plaoaa lagrer» «tc.    Is tmma of powar xalatiwt to 

1 nilliwatt (or dB«) the patmx level is 

p ■ -188 dfe«    , 

»hid» would require e very sensitive receiver Indeed for detection. 

It must be esphasised that the atcenu&tion factor was assmsd to be 

ID1* oT*.    If *he attenuation factor is actually an order of magnitude 

lacier thm this (which it «ore than likely is), the pwer given by 

Bq. (254) vould be virtually Zf.ro. 



Vhe prop»g*tiort of electron acoustic vaves le an loboa^eaeous t 

warm, lossy plasws. layer has been lovestlgatedL The coupled wave 

equations (Eqs. (61) and {6c)) have been solved by a finite 

differe&ce auüierical technique in order to determine the degree of 

coupling between the eiectrensagnetic wave and the electron acoustK 

wave In the inhor..'>geneous region of a war«, los ay plasisa layer. 

For the plasisa prc'lles and operatiag frequencies considered, it was 

found that the pre; ture (or acoustic) solutions of the coupled wave 

equations consisted of two ports: a "forced solution" with on x« 

variation sisdJar to the coupling coefficient in the pressure 

equation (Eq. (62)*, and a "bascgeneoue soIatlonM which character- 

ized the propagating electron acoustic trasve. It is shown that both 

parts of the solution are directly dependent upon (or coupled to) 

the magnetic field in the inhOKOgeneous plasxa (see Eqs. (123)» 

(ifco), (1^7) and (1^6)). It is also shown that for the plossa 

profiles and operatiag frequencies ccoslderedf the hoaogeseous solu- 

tion is negligible coopsred to the forced solution except possibly 

near the dielectric-plesna interface, thus, even though the electron 

acoustic wave is indeed coupled to the electrcoagnetlc wave, the 

electron-acoustic wave is severly daaped for propagation in either 

direction in the inhomogeneous plasma. In the approximate analysis 

it is shown that the "propagation constant" for the electron acoustic 

wave in the inhomogeneous region is the same as that for a homogeneous, 

12U 
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'ismtf pissasis», (Eq, {I?C')} «s4 iihe 4i«f-fa5 •rf»ct i# «ae to tise Jar^fr 

t .•Ilia:CO rr«qa«Jsy «f tis» pl««s« 

atate * iBe-aTrera«,^ pewer protfuectf &y to* cpc^erslait of « prcscere 

v&re into »n electransgäietfe v«V9 «t a äieleetri^ haati&ax-j  is of tb« 

onter of IC"22 vatt» for a typical pldseta profil« «öd CTeratii^g 

freqi&Kicy, Tbis rssvlt is baaed on a probe are« of 1.0 !s^, an 

iGci(>Qt electrosa£Detis powe^ of 10 mr sjKi aa qptiutisg fretyeacy 

of 30 Sis. rhls recei?«^ poarir iev*l is loo low fc^ r^liaole 

detectioa, 

Ic additloß, it lä shown that the coBversion efficient for 

pressure vsve-wo-aiectrces^ietie vavo at a di electrie-plaswa 

boundary is reduced for coilieloc freq^ieccies veil below the opera- 

ting frequency (see Tig. 31}. High collision frequencies will, 

therefore, reduce the detection capability of an acoustic probe 

systes "by dacping the propagating acoustic wave arid by reducing the 

conversion efficiency. The resoLta of this investig-.tioa ghow that 

even for an inhomogeneous plasDa« the damping effects of high 

collision frequency on electron-acoustic waves is drastic. 

For the plssma profiles considered, and using a steady-state 

plane wave analysis, the effect of the acoustic solution upon the 

electromagnetic solution is shown to be negligible. This is true 

even for a "wana" plasma layer with temperatures as hig*. as 5000CK. 

Therefore, for the plasma conditions studied, the approximate 

solution for the pressure given by Eq. (115), used togetr-tr with 

Eq. (6i) for the magnetic field, adequately treats the effects of 
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c-c«spressita-ity. This is  valid eisr-e the  %pproxiaate solutioD for 

jj is v*ry good for the pis*?« persKeters ecaatsidered. Thus the 

effect sf the acoustic portioa of the fields in the piessu» is taken 

care of by substituting p fros the approxinate solution into the 

right hand side of £q. (6l). In this case, the effect on the 

electroasgnetic fields in the piasea will be determined by sol'/ing 

Eq. Cci) rather than the tvc coqpied secoöd order differential 

equations. 
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APPENDIX A: APPROXIHATIONS INVOLVED IN THE APPROXIMATE SOLUTION 

the approximations used in obtaining the approximate solution will 

be investigated here for the following parameters: 

n t  10u - lO^ cm"3 
o 

T:     3000 - 4000oK 

v:    6.5 x 10n sec"1 

f:    2 GHz 

Sj:    20° 

The coefficients  for the differential equations were computed and 

their maximian or minimum absolute values are listed below: 

|A| >_6.0 x 102 

!B| ^2.0 x lO1* 

|C| < 1.5 x 105 

|D| <_6.0 x 105 

|E| ^ 1.8 x 1012 

I?! <_2.O x IO5 

The characteristic length of the plasma inhomogeneity is just the width 

which was 2mm.    The approximation will improve as d is decreased. 

Using Eqs.  (108) and (109) gives 

(2.5 x 105 + 3 x 105 + 2 x IO1*) Hz - 1.5 x 105 p 

and 

(2.5 x 105 + 3 x 108 + 1.8 x 1012) p - 2 x 10fc H z 

From the first equation, it is observed that the first two terms in 

the parentheses are much larger than the last.    In the second equation 
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the third term la the parentheses conpletely dominates the first two. 

In the approximate solution, only the dootlnant ten» at« xetala*;<L 

It is now necessary to coapare CF/E with 1/d2 and A/d.    For the 

profile and operating frequency,  JEJ BiniMUB • 8 x 1010 and the aaxl- 

muDi absolute values for C aad F have been given. 

& I - 3.75 a W2 

& ^^P 

E ■ax. 

i- • 2.50 x 105 

d2 

<j[
ldn- - 4.00 x 10b 

Therefore CF/E Is auch scalier than the other two tens and la neglected 

in the approximate solution.    In the approxlaate fore, the equations 

then becooe 

and 

i^)\'0 

•(f) B z 

Son» general xenaxka am be vade about the validity of the 

approximate solution. The approxiaatioa is «ore accurate at lower 

frequencies. The accuracy is also inproved as the electron density 

is increased or the plasma thickness is decreased. 
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trramx B: COEFFICIENTS OF THE COUPLED HAVE EQUATIONS 

FOS A PABTICULAR CASE 

lb« teal «ad iMglaary parts of Che eotttidMat» of the coaled 

waw equations «re given In Table II for the follatfint plasaa profile: 

n :    10s2 - I0l? aTt o 

T;    2000 - SSWK 

d:    1.0 an 

v:    1011 «ec*1 

6,:    30* 

is    26 CHk 

The coefficients cbaos«, of coone, for difforrat plasaa profiles, 

angles of incidence md operating fraqnendes. 

NOTE:    E(A) Beans the real part of coefficient A and I (A) aesos the 
iaaglnarf part; the same notation applies for the other coeffi- 
cients. 
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APPENDIX C: APPROXIMATION FOR THE DERIVATIVE OF H 

AT THE FAR BOSHDART 

The expression for Che derivative of H    at the outer boundary for 
s 

the plasma-free space condition la given by 

dH  z 
dx x«d * w- p(d) - ep<d) ^ 0 • 

«here p(d)  and H   . are the values of p and H    at the boindaxy.    It la za r z 

necessary now to compare the two terms on the right-hand side of the 

equation above. 

eK ? 
^ P(d) ! r.p(d) X^ H8d    . 

Substituting typical values for the variables above (and choosing them 

so that the left-hand side would be as large as possible and the right- 

hand aide would be as small as possible) gives 

lO'19 103 ? 3 

^ ^-p(d) < (0.1X10)    H   . 
10n io-so - »«I 

or 

10 p(d) _< Hzd    . 

From the section Solutions of the Coupled Wave Equations it is seen 

that p(d) is always at least four orders of magnitude below H  ., there 

fore the inequality above holds and we have 
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^ p(d) - c (d) E^ Hid . 

and to a very good approzimacioo. 

dH 
£ i   - -it  id)  K  K . 

^ «x-d    p   OX *d 
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&*a»lilX  D: ACOUSTIC VAVELENEIHS OOHPAIED TO THE OEBTE 

LEHCTB AMD HE UTEI-PAITICLE SPACISG 

m 

The «cdost&c wamlcaftSi in tb* Inhoajiwuoui plans will be 

coapuced at cbc eqvlvalMe wavclengtb In a laaay, howtgancooB plaaaa 

with cfa« aiae «lactron dewity aad tawpcrataze.    This, of coat»«, i» 

tmly «ft spproxiaatiott alaoc a definite wa«elaagtfa caonot be found for 

a plii—■ wave in an inhoapgeneoue aedliai.    The wave length la cgnputed 

m folloaa: 

T -1772 w2 

o o 

whese Y  conaiaca of a teal part «id an iaaginary part «id la Jott 

die x coaponaat of the coaplex propagation constant of the plasaa wave 

la a hoaoganeous plasaa. The plasaa wavelength In the x dizectioa I» 

v2'A{v}. 
«here la indicates that the tasglnary part of y     Is to be used. 

P* 
The purpose of coaputing a plasaa wavelei^th is to detexaine 

If the plaeaa wavelength la larger or saaller then the Debye length 

in the plaaaa.    The Debye length la coaputed froa the follotflng 

expression: 

Vv2 
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The placaa varweJecgdi is also coapasvd to the Inter-particlc 

spadng tfbldi I« glwea by o '"--'. 

The three qvuntltlea daecrihed above tplamm wavaleagth, Dchye 

lanff}, and Intex-partid« spacing) were coaputcd as tmctivam of tha 

discaaoe into tha piaaaa l«rer in Figs. 41 to 44 for du* four plasaa 

profiles of Intereiit. 

It is noted that in Figs. 42 md 4j, the plasaa vavelecgth la 

»aller than the Dehy» length in a verjr oartov regiao dm* Co the 

««11.    This la due to the low electron densities in this region.    Is 

Fig. 43 it is observed that a decrease in operating frequency cm 

increase the picas« wevelenftfa to a valne larger than the Debjre 

let^th.    The plasm» wavelength fs larger than tue inter-particle 

spadog in mil cases. 
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Figure 41.    Acoustic Wavelength, Deby« Length and luter-Partlcle 
Spacing <n :    1012 to 10U c«-3) 
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Figur« 42.    Acoustic Wavelength, Debye Length and Inter-Particle 
Spacing (n :    lO10 to 103i cm"-) 
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Figure A3.    Acoustic Wavelength, Debye Length «ad Inter-Par tide 
Spacing (n :    1011 to IO11* cm-3) 
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Figure 44.    Acoustic Wavelength, Debye Length and Inter-Particle 
Spacing (no:    1013 to 1014 an-3) 
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AIPESLIX E: riC-IT.AL "^KPfTE?- FFCÄSÄM 

Csl^-latiscs cf tr.e electrcsEsagsetic sad pressure fields in 

tie i&hoeBogecec^s plasa« sheatfe wete perfcvaed an the CCC 6600 

co^>uter at the Aii- Force Vettpcss Laboratory, Ktrtlana AFB, lew 

Mexico.    Bbsei -JS these calculations for various plassa sheaths 

witä large peak electros densities and high ccllisioc frequencies, 

it vas coscluied in this study that the snail wavelength propa- 

gating acoustic waves were daaped so severely that reliable 

detection of the reflected acoustic waves would be iapossible. 

For less dense plascas or for plasaas with such lower collision 

frequencies, reflected accaistic waves may provide valuable diag- 

nostic inforatation. the computer progran developed for this work 

would apply equally well for these types of plasaas and the program 

is included for this reason. A F0HTRA9 listing of the progras and 

subroutines, along with sastple input and output data, are given in 

this appendix. 

Prograa SSCDE1 uses the finite difference numerical solution 

process described in Chapter IV to solve the two equations: 

d2H  . dH  „„ 
Z-2- + A ~ + BE = C 
. 2    cl*       p 
ox' r 

—2- ♦ Dn + E = FH 
dx2   to   P 

where A, B, C, D, E and F are functions of the plasma medium and 

vary with distance x. The program is divided into subroutines which: 



(1) calculate the bounaary ccnditiccs; 

(2) calculate the coefficients; 

(3) caicilate tbe initial "guesses" for K and p; 

(«•) iterate the nuserical soluticc; 

(5) set the output data fonsat; 

(6) calculate the reflection coefficient. 

There is one basic restriction on tbe program as it is presently 

written. The electron density profile sust be linearly increasing 

fron a value at the wall *o a peak value at some distance fron the 

vail. Both of the nodels in Fig. 5  can be used if appropriate 

boundary conditions at the location of the peak electron density are 

used in the subroutine calculating the boundary cooditions. 

Listed below are the FORTRAN aan.es assigned to the input and 

output variables of Prograo HSCDEl, along with their definitions and 

units. 

INPUT 

FORTRAN NAME 

AKD 

AN1 

M2 

ANU 

BLD 

DEGREE 

FREQ 

DEFINITION 

Relative dielectric constant of 

the dielectric material. 

Electron density at the wall. 

Peak electron density. 

Collision frequency. 

Distance from the wall to the 

peak electron density. 

Angle of incidence (0,). 

Frequency of electromagnetic wave. 

UNITS 

Dimenslonless 

electrons/m- 

electrons/m3 

sec 1 

meters 

degrees 

Hz 
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FOFTF^ SAME DEF1XITIOS UBITS 

MAXT.T    MaxitsuB auaber of iteratiocs- integer 

SPTS    üunber of points on the x-axis integer 

for the numerical solution. 

TE1     Electron tenperature at the wall.        0K 

TE2     Electron temperature at x « BLD ^ 

Mote:  AH1, AH2, ABU, TE1 and TE2 are defined in the program 

under PROFILE DEFIHITION. The variables AKD, SLD, FREQ and DEGBEE 

are read into the program under FOBMAT HE20.2. The variable HPTS 

is read into the program under the FORMAT 110. 

OUTPUT 

DEFIHITTOH FORTRAS HAME 

ABSH(I) 

UNITS 

amperes/meter jH|, magnitude of magnetic intensity 

intensity at point I. 

ABSF(I)    |p|, magnitude of pressure field at 

point I. 

H(I)     Magnetic intensity at point I, a 

complex v&riable. 

I      Point along x-axis, 1=1, 2,...NPTS. 

P(l)     Pressure field amplitude at point I, 

a complex variable. 

XA(I)     Distance value, x, at point I. 

The program will also print out the coefficients o-'" the 

coupled differential equations as functions of I. In this printout, 

RCA) represents the real part of coefficient A and l(A) its imaginary 

part. A similar notation is used for the other coefficients. In the 

newtons/meter2 

ampere/meter 

integer 

newtons/meter2 

meters 
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output listing, x is XA(l), R(K) is the real part cf H(l), 1(H) 

is the imaginary part of H(l), H{P) is the real part of P(I), l(P) 

is the imaginary part of P(I), ABSH is the absolute value of H(I) 

and ABSP is the absolute value of P(I). 
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